Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6627, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103322

RESUMEN

Functional genetics has identified drug targets for metabolic disorders. Opioid use impacts metabolic homeostasis, although mechanisms remain elusive. Here, we explore the OPRD1 gene (encoding delta opioid receptor, DOP) to understand its impact on type 2 diabetes. Large-scale sequencing of OPRD1 and in vitro analysis reveal that loss-of-function variants are associated with higher adiposity and lower hyperglycemia risk, whereas gain-of-function variants are associated with lower adiposity and higher type 2 diabetes risk. These findings align with studies of opium addicts. OPRD1 is expressed in human islets and beta cells, with decreased expression under type 2 diabetes conditions. DOP inhibition by an antagonist enhances insulin secretion from human beta cells and islets. RNA-sequencing identifies pathways regulated by DOP antagonism, including nerve growth factor, circadian clock, and nuclear receptor pathways. Our study highlights DOP as a key player between opioids and metabolic homeostasis, suggesting its potential as a therapeutic target for type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Receptores Opioides delta , Receptores Opioides delta/metabolismo , Receptores Opioides delta/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Insulina/metabolismo , Secreción de Insulina/efectos de los fármacos , Secreción de Insulina/genética , Adulto
2.
Diabetologia ; 67(2): 327-332, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38051360

RESUMEN

AIMS/HYPOTHESIS: GLIS3 encodes a transcription factor involved in pancreatic beta cell development and function. Rare pathogenic, bi-allelic mutations in GLIS3 cause syndromic neonatal diabetes whereas frequent SNPs at this locus associate with common type 2 diabetes risk. Because rare, functional variants located in other susceptibility genes for type 2 diabetes have already been shown to strongly increase individual risk for common type 2 diabetes, we aimed to investigate the contribution of rare pathogenic GLIS3 variants to type 2 diabetes. METHODS: GLIS3 was sequenced in 5471 individuals from the Rare Variants Involved in Diabetes and Obesity (RaDiO) study. Variant pathogenicity was assessed following the criteria established by the American College of Medical Genetics and Genomics (ACMG). To address the pathogenic strong criterion number 3 (PS3), we conducted functional investigations of these variants using luciferase assays, focusing on capacity of GLIS family zinc finger 3 (GLIS3) to bind to and activate the INS promoter. The association between rare pathogenic or likely pathogenic (P/LP) variants and type 2 diabetes risk (and other metabolic traits) was then evaluated. A meta-analysis combining association results from RaDiO, the 52K study (43,125 individuals) and the TOPMed study (44,083 individuals) was finally performed. RESULTS: Through targeted resequencing of GLIS3, we identified 105 rare variants that were carried by 395 participants from RaDiO. Among them, 49 variants decreased the activation of the INS promoter. Following ACMG criteria, 18 rare variants were classified as P/LP, showing an enrichment in the last two exons compared with the remaining exons (p<5×10-6; OR>3.5). The burden of these P/LP variants was strongly higher in individuals with type 2 diabetes (p=3.0×10-3; OR 3.9 [95% CI 1.4, 12]), whereas adiposity, age at type 2 diabetes diagnosis and cholesterol levels were similar between variant carriers and non-carriers with type 2 diabetes. Interestingly, all carriers with type 2 diabetes were sensitive to oral sulfonylureas. A total of 7 P/LP variants were identified in both 52K and TOPMed studies. The meta-analysis of association studies obtained from RaDiO, 52K and TOPMed showed an enrichment of P/LP GLIS3 variants in individuals with type 2 diabetes (p=5.6×10-5; OR 2.1 [95% CI 1.4, 2.9]). CONCLUSIONS/INTERPRETATION: Rare P/LP GLIS3 variants do contribute to type 2 diabetes risk. The variants located in the distal part of the protein could have a direct effect on its functional activity by impacting its transactivation domain, by homology with the mouse GLIS3 protein. Furthermore, rare P/LP GLIS3 variants seem to have a direct clinical effect on beta cell function, which could be improved by increasing insulin secretion via the use of sulfonylureas.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ratones , Animales , Recién Nacido , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica , Células Secretoras de Insulina/metabolismo , Mutación , Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo
3.
Eur J Endocrinol ; 189(4): K15-K18, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37888144

RESUMEN

Mutations in genes encoding proteins located in the leptin/melanocortin pathway have been identified in the rare cases of genetic obesities. Heterozygous variants of MRAP2, encoding a G coupled-protein receptor accessory protein implicated in energy control notably via the melanocortin-4 receptor, have been recently identified. A 24-year-old patient with early-onset severe obesity (body mass index [BMI]: 64 kg/m2) associated with hypertension, respiratory complications, nonalcoholic fatty liver disease, and type 2 diabetes was referred to our department. Sleeve gastrectomy was successful. A new heterozygous variant in MRAP2 (NM_138409.4: c.154G>C/p.G52R) variant was identified in the patient DNA. Functional assessment confirmed that this new variant was pathogenic. We report a new pathogenic loss-of-function mutation in MRAP2 in a patient suffering from a severe multicomplicated obesity. This confirms the metabolic phenotype in patients with this monogenic form of obesity. Longer follow-up will be necessary. Our finding will allow a personalized medicine.


Asunto(s)
Cirugía Bariátrica , Diabetes Mellitus Tipo 2 , Humanos , Adulto Joven , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/cirugía , Obesidad/complicaciones , Obesidad/genética , Obesidad/cirugía , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA