Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Scand J Med Sci Sports ; 34(6): e14672, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38887854

RESUMEN

Footwear has the potential to reduce soft-tissue vibrations (STV) but responses are highly subject-specific. Recent evidence shows that compressive garments minimizing STV have a beneficial effect on neuromuscular (NM) fatigue. The aim was to determine whether an individualized midsole hardness can minimize STV and NM fatigue during a half marathon. Twenty experienced runners were recruited for three visits: a familiarization session including the identification of midsole minimizing and maximizing STV amplitude (MIN and MAX, respectively), and two half marathon sessions at 95% of speed at the second ventilatory threshold. STV of the gastrocnemius medialis (GM) muscle, running kinetics, foot strike pattern, rating perceived exhaustion (RPE), and midsole liking were recorded every 3 km. NM fatigue was assessed on plantar flexors (PF) before (PRE) and after (POST) the half marathon. At POST, PF central and peripheral alterations and changes in contact time, step frequency, STV median frequency, and impact force frequency as well as foot strike pattern were found in both MIN and MAX. No significant differences in damping, STV main frequency, flight time, duty factor, and loading rate were observed between conditions whatever the time period. During the half marathon, STV amplitude of GM significantly increased over time for the MAX condition (+13.3%) only. Differences between MIN and MAX were identified for RPE and midsole liking. It could be hypothesized that, while significant, the effect of midsole hardness on STV is too low to substantially affect NM fatigue.


Asunto(s)
Carrera de Maratón , Fatiga Muscular , Músculo Esquelético , Zapatos , Vibración , Humanos , Masculino , Adulto , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Femenino , Carrera de Maratón/fisiología , Pie/fisiología , Dureza , Fenómenos Biomecánicos , Carrera/fisiología , Persona de Mediana Edad
2.
Med Sci Sports Exerc ; 55(3): 389-397, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36251372

RESUMEN

INTRODUCTION: Cost of locomotion (C L ) has been shown to increase after endurance running and cycling bouts. The main purpose of this study was to compare, in the same participants, the effect of both modalities on C L when matched for relative intensity and duration. METHODS: Seventeen recreational athletes performed two incremental tests in running and cycling to determine the first ventilatory threshold then two 3-h bouts of exercise at 105% of threshold, with gas exchange measurements taken for 10 min at the start, middle and end of the 3 h to calculate C L . Neuromuscular fatigue during isometric knee extensor contractions and force-velocity profile on a cycle ergometer were assessed before and immediately after the 3-h trials. RESULTS: C L significantly increased at mid (+3.7%, P = 0.006) and end (+7.4%, P < 0.001) of exercise for cycling compared with start, whereas it did not change with time for running. Cardio-respiratory and metabolic variables changed similarly for cycling and running, therefore not explaining the time-course differences in C L between modalities. Changes in C L during cycling correlated significantly with loss of maximal force extrapolated from the force-velocity profile ( r = 0.637, P = 0.006) and changes in cadence ( r = 0.784, P < 0.001). CONCLUSIONS: The type of locomotion influences the effects of exercise on energy cost because 3 h of exercise at the same relative intensity caused a significant increase of cycling C L , and no changes in running C L . The changes in C L in cycling are likely due, at least in part, to fatigue in the locomotor muscles.


Asunto(s)
Ejercicio Físico , Consumo de Oxígeno , Humanos , Consumo de Oxígeno/fisiología , Ejercicio Físico/fisiología , Ergometría , Prueba de Esfuerzo , Locomoción , Ciclismo/fisiología , Resistencia Física/fisiología
3.
Med Sci Sports Exerc ; 54(5): 872-882, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35072662

RESUMEN

INTRODUCTION: Running and cycling represent two of the most common forms of endurance exercise. However, a direct comparison of the neuromuscular consequences of these two modalities after prolonged exercise has never been made. The aim of this study was to compare the alterations in neuromuscular function induced by matched-intensity and duration cycling and running exercise. METHODS: During separate visits, 17 endurance-trained male participants performed 3 h of cycling and running at 105% of the gas exchange threshold. Neuromuscular assessments were taken are preexercise, midexercise, and postexercise, including knee extensor maximal voluntary contractions (MVC), voluntary activation (VA), high- and low-frequency doublets (Db100 and Db10, respectively), potentiated twitches (Qtw,pot), motor evoked potentials (MEP), and thoracic motor evoked potentials (TMEP). RESULTS: After exercise, MVC was similarly reduced by ~25% after both running and cycling. However, reductions in VA were greater after running (-16% ± 10%) than cycling (-10% ± 5%; P < 0.05). Similarly, reductions in TMEP were greater after running (-78% ± 24%) than cycling (-15% ± 60%; P = 0.01). In contrast, reductions in Db100 (running vs cycling, -6% ± 21% vs -13% ± 6%) and Db10:100 (running vs cycling, -6% ± 16% vs -19% ± 13%) were greater for cycling than running (P ≤ 0.04). CONCLUSIONS: Despite similar decrements in the knee extensor MVC after running and cycling, the mechanisms responsible for force loss differed. Running-based endurance exercise is associated with greater impairments in nervous system function, particularly at the spinal level, whereas cycling-based exercise elicits greater impairments in contractile function. Differences in the mechanical and metabolic demands imposed on the quadriceps could explain the disparate mechanisms of neuromuscular impairment after these two exercise modalities.


Asunto(s)
Ciclismo , Fatiga Muscular , Ciclismo/fisiología , Electromiografía , Humanos , Masculino , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA