Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Hum Genet ; 24(8): 1112-6, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-26669660

RESUMEN

Acyl-CoA dehydrogenase family, member 9 (ACAD9) mutation is a frequent, usually fatal cause of early-onset cardiac hypertrophy and mitochondrial respiratory chain complex I deficiency in early childhood. We retrospectively studied a series of 20 unrelated children with cardiac hypertrophy and isolated complex I deficiency and identified compound heterozygosity for missense, splice site or frame shift ACAD9 variants in 8/20 patients (40%). Age at onset ranged from neonatal period to 9 years and 5/8 died in infancy. Heart transplantation was possible in 3/8. Two of them survived and one additional patient improved spontaneously. Importantly, the surviving patients later developed delayed-onset neurologic or muscular symptoms, namely cognitive impairment, seizures, muscle weakness and exercise intolerance. Other organ involvement included proximal tubulopathy, renal failure, secondary ovarian failure and optic atrophy. We conclude that ACAD9 mutation is the most frequent cause of cardiac hypertrophy and isolated complex I deficiency. Heart transplantation in children surviving neonatal period should be considered with caution, as delayed-onset muscle and brain involvement of various severity may occur, even if absent prior to transplantation.


Asunto(s)
Acil-CoA Deshidrogenasas/genética , Cardiomegalia/genética , Complejo I de Transporte de Electrón/deficiencia , Enfermedades Mitocondriales/genética , Tasa de Mutación , Acil-CoA Deshidrogenasas/metabolismo , Cardiomegalia/patología , Células Cultivadas , Niño , Preescolar , Complejo I de Transporte de Electrón/genética , Femenino , Mutación del Sistema de Lectura , Humanos , Lactante , Masculino , Enfermedades Mitocondriales/patología , Mutación Missense , Síndrome
2.
J Med Genet ; 51(12): 834-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25351951

RESUMEN

BACKGROUND: Inherited optic neuropathy has been ascribed to mutations in mitochondrial fusion/fission dynamics genes, nuclear and mitochondrial DNA-encoded respiratory enzyme genes or nuclear genes of poorly known mitochondrial function. However, the disease causing gene remains unknown in many families. METHODS: We used exome sequencing in order to identify the gene responsible for isolated or syndromic optic atrophy in five patients from three independent families. RESULTS: We found homozygous or compound heterozygous missense and frameshift mutations in the gene encoding mitochondrial aconitase (ACO2), a tricarboxylic acid cycle enzyme, catalysing interconversion of citrate into isocitrate. Unlike wild type ACO2, all mutant ACO2 proteins failed to complement the respiratory growth of a yeast aco1-deletion strain. Retrospective studies using patient-derived cultured skin fibroblasts revealed various degrees of deficiency in ACO2 activity, but also in ACO1 cytosolic activity. CONCLUSIONS: Our study shows that autosomal recessive ACO2 mutations can cause either isolated or syndromic optic neuropathy. This observation identifies ACO2 as the second gene responsible for non-syndromic autosomal recessive optic neuropathies and provides evidence for a genetic overlap between isolated and syndromic forms, giving further support to the view that optic atrophy is a hallmark of defective mitochondrial energy supply.


Asunto(s)
Aconitato Hidratasa/genética , Mutación , Enfermedades del Nervio Óptico/genética , Aconitato Hidratasa/metabolismo , Adulto , Encéfalo/patología , Preescolar , Ciclo del Ácido Cítrico , Activación Enzimática , Exoma , Resultado Fatal , Femenino , Expresión Génica , Genes Recesivos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Imagen por Resonancia Magnética , Masculino , Oftalmoscopios , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Enfermedades del Nervio Óptico/diagnóstico , Enfermedades del Nervio Óptico/metabolismo , Evaluación del Resultado de la Atención al Paciente , Hermanos
3.
PLoS Genet ; 10(2): e1004110, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516400

RESUMEN

Biogenesis of mammalian mitochondrial ribosomes requires a concerted maturation of both the small (SSU) and large subunit (LSU). We demonstrate here that the m(5)C methyltransferase NSUN4, which forms a complex with MTERF4, is essential in mitochondrial ribosomal biogenesis as mitochondrial translation is abolished in conditional Nsun4 mouse knockouts. Deep sequencing of bisulfite-treated RNA shows that NSUN4 methylates cytosine 911 in 12S rRNA (m5C911) of the SSU. Surprisingly, NSUN4 does not need MTERF4 to generate this modification. Instead, the NSUN4/MTERF4 complex is required to assemble the SSU and LSU to form a monosome. NSUN4 is thus a dual function protein, which on the one hand is needed for 12S rRNA methylation and, on the other hand interacts with MTERF4 to facilitate monosome assembly. The presented data suggest that NSUN4 has a key role in controlling a final step in ribosome biogenesis to ensure that only the mature SSU and LSU are assembled.


Asunto(s)
Proteínas Portadoras/genética , Metiltransferasas/genética , Mitocondrias/genética , ARN Ribosómico/genética , Ribosomas/genética , Animales , Proteínas Portadoras/metabolismo , Metilación de ADN/genética , Metiltransferasas/metabolismo , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Unión Proteica , ARN Ribosómico/biosíntesis , Ribosomas/ultraestructura , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA