Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(15)2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37570861

RESUMEN

Six new complexes of the ligand HQcy (-4-(cyclohexanecarbonyl)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one) and Ln3+ ions with emission in the near-infrared (Nd3+) or visible and near-infrared (Sm3+, Pr3+) spectral regions were synthesized and characterized using various methods, including single crystal X-ray diffraction. The study demonstrated that both tris complexes [LnQcy3(H2O)(EtOH)] and tetrakis-acids [H3O][LnQcy4] can be synthesized by varying the synthetic conditions. The photochemical properties of the complexes were investigated experimentally and theoretically using various molecular spectroscopy techniques and Judd-Ofelt theory. The objective was to quantitatively and qualitatively disclose the influence of complex stoichiometry on its luminescence properties. The study showed that the addition of an extra ligand molecule (in the tetrakis species) increased molar extinction by up to 2 times, affected the shape of photoluminescence spectra, especially of the Pr3+ complex, and increased the quantum yield of the Sm3+ complex by up to 2 times. The results obtained from this study provide insights into the luminescent properties of lanthanide coordination compounds, which are crucial for the design and development of novel photonic materials with tailored photophysical properties.

2.
Polymers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36850151

RESUMEN

A new strategy for the easy polymerization of anionic [Ln(Qcy)4]- (HQcy-4-(cyclohexanecarbonyl)-5-methyl-2-phenyl-2,4-dihydro-3H-pyrazol-3-one) into two-dimensional layers of [AgLn(Qcy)4]n (Ln = Sm, Eu, Gd, Tb and Dy) is proposed by binding the single molecular anions [Ln(Qcy)4]- to silver cations through the coordination of the pyridinic nitrogen atoms of the pyrazolonate rings. The luminescent properties of [AgLn(Qcy)4]n have been studied in detail, and it was shown that the previously described low photoluminescence quantum yield (PLQY) of [Eu(Qcy)4]- is due to Ligand-To-Metal Charge Transfer (LMCT) quenching, which is effectively suppressed in the heterometallic [AgEu(Qcy)4]n polymer. Sensibilization coefficients for H3O[Eu(Qcy)4], [AgEu(Qcy)4]n, and H3O[Sm(Qcy)4] complexes (n ≈ 1) were estimated via theoretical analysis (also by using Judd-Ofelt theory for Sm3+) and PLQY measurements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA