Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 158(20)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37249229

RESUMEN

We present a Graphics Processing Unit (GPU)-accelerated version of the real-space SPARC electronic structure code for performing Kohn-Sham density functional theory calculations within the local density and generalized gradient approximations. In particular, we develop a modular math-kernel based implementation for NVIDIA architectures wherein the computationally expensive operations are carried out on the GPUs, with the remainder of the workload retained on the central processing units (CPUs). Using representative bulk and slab examples, we show that relative to CPU-only execution, GPUs enable speedups of up to 6× and 60× in node and core hours, respectively, bringing time to solution down to less than 30 s for a metallic system with over 14 000 electrons and enabling significant reductions in computational resources required for a given wall time.

2.
J Chem Phys ; 152(19): 191101, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-33687239

RESUMEN

Triply periodic continuous morphologies (networks) arising as a result of the microphase separation in block copolymer melts have so far never been observed self-assembled in systems of particles with spherically symmetric interaction. We report a molecular dynamics simulation where two simple one-component liquids form upon cooling an equilibrium network with the Fddd space group symmetry. This complexity reduction in the liquid network formation in terms of the particle geometry and the number of components evidences the generic nature of this class of phase transition, suggesting opportunities for producing these structures in a variety of new systems.

3.
Phys Rev E ; 97(5-1): 052702, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29906887

RESUMEN

The hexatic phase predicted by the theories of two-dimensional melting is characterized by the power-law decay of the orientational correlations, whereas the in-layer bond orientational order in all the hexatic smectic phases observed so far was found to be long range. We report a hexatic smectic phase where the in-layer bond orientational correlations decay algebraically, in quantitative agreement with the hexatic ordering predicted by the theory for two dimensions. The phase was formed in a molecular dynamics simulation of a one-component system of particles interacting via a spherically symmetric potential. The present results thus demonstrate that the theoretically predicted two-dimensional hexatic order can exist in a three-dimensional system.

4.
Soft Matter ; 12(43): 8869-8875, 2016 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-27722432

RESUMEN

We report a solid smectic phase that exhibits dodecagonal global order. It is composed of axially stacked hexagonally ordered particle layers, and its 12-fold rotational symmetry induced by the 30° rotation of adjacent layers with respect to each other. A quasicrystal was produced in a molecular-dynamics simulation of a single-component system of particles interacting via a spherically-symmetric potential. It was formed as a result of a first-order phase transition from an isotropic liquid state that occurred under constant-density cooling. This finding implies that a similarly structured quasicrystal can possibly be produced by the same class of systems as those forming smectic-B crystals. This quasicrystal can also be expected to arise in a system of spherically-shaped colloidal particles with appropriately tuned potential.

5.
Soft Matter ; 11(23): 4606-13, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25959363

RESUMEN

We report a molecular dynamics simulation demonstrating that a columnar liquid crystal, commonly formed by disc-shaped molecules, can be formed by identical particles interacting via a spherically symmetric potential. Upon isochoric cooling from a low-density isotropic liquid state the simulated system underwent a weak first order phase transition which produced a liquid crystal phase composed of parallel particle columns arranged in a hexagonal pattern in the plane perpendicular to the column axis. The particles within columns formed a liquid structure and demonstrated a significant intracolumn diffusion. Further cooling resulted in another first-order transition whereby the column structure became periodically ordered in three dimensions transforming the liquid-crystal phase into a crystal. This result is the first observation of a columnar liquid crystal formation in a simple one-component system of particles. Its conceptual significance is in that it demonstrated that liquid crystals that have so far only been produced in systems of anisometric molecules can also be formed by mesoscopic soft-matter and colloidal systems of spherical particles with appropriately tuned interatomic potential.

6.
J Chem Phys ; 141(23): 234503, 2014 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-25527944

RESUMEN

We report a molecular-dynamics simulation of a single-component system of particles interacting via a spherically symmetric potential that is found to form, upon cooling from a liquid state, a low-density porous crystalline phase. Its structure analysis demonstrates that the crystal can be described by a net with a topology that belongs to the class of topologies characteristic of the Metal-Organic Frameworks (MOFs). The observed net is new, and it is now included in the Reticular Chemistry Structure Resource database. The observation that a net topology characteristic of MOF crystals, which are known to be formed by a coordination-driven self-assembly process, can be reproduced by a thermodynamically stable configuration of a simple single-component system of particles opens a possibility of using these models in studies of MOF nets. It also indicates that structures with MOF topology, as well as other low-density porous crystalline structures can possibly be produced in colloidal systems of spherical particles, with an appropriate tuning of interparticle interaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA