Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Res Sq ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39041040

RESUMEN

Current clinical strategies for the delivery of pulmonary therapeutics to the lung are primarily targeted to the upper portions of the airways. However, targeted delivery to the lower regions of the lung is necessary for the treatment of parenchymal lung injury and disease. Here, we have developed an mRNA therapeutic for the lower lung using one-component Ionizable Amphiphilic Janus Dendrimers (IAJDs) as a delivery vehicle. We deliver an anti-inflammatory cytokine mRNA, transforming growth factor-beta (TGF-ß), to produce transient protein expression in the lower regions of the lung. This study highlights IAJD's potential for precise, effective, and safe delivery of TGF-ß mRNA to the lung. This delivery system offers a promising approach for targeting therapeutics to the specific tissues, a strategy necessary to fill the current clinical gap in treating parenchymal lung injury and disease.

2.
Pharmacol Res Perspect ; 12(4): e1229, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38965070

RESUMEN

The risk of a terrorist attack in the United States has created challenges on how to effectively treat toxicities that result from exposure to chemical weapons. To address this concern, the United States has organized a trans-agency initiative across academia, government, and industry to identify drugs to treat tissue injury resulting from exposure to chemical threat agents. We sought to develop and evaluate an interactive educational session that provides hands-on instruction on how to repurpose FDA-approved drugs as therapeutics to treat toxicity from exposure to chemical weapons. As part of the Rutgers Summer Undergraduate Research Fellowship program, 23 undergraduate students participated in a 2-h session that included: (1) an overview of chemical weapon toxicities, (2) a primer on pharmacology principles, and (3) an interactive session where groups of students were provided lists of FDA-approved drugs to evaluate potential mechanisms of action and suitability as countermeasures for four chemical weapon case scenarios. The interactive session culminated in a competition for the best grant "sales pitch." From this interactive training, students improved their understanding of (1) the ability of chemical weapons to cause long-term toxicities, (2) impact of route of administration and exposure scenario on drug efficacy, and (3) re-purposing FDA-approved drugs to treat disease from chemical weapon exposure. These findings demonstrated that an interactive training exercise can provide students with new insights into drug development for chemical threat agent toxicities.


Asunto(s)
Sustancias para la Guerra Química , Reposicionamiento de Medicamentos , United States Food and Drug Administration , Humanos , Estados Unidos , Sustancias para la Guerra Química/toxicidad , Aprobación de Drogas , Estudiantes
3.
Toxicol Sci ; 200(2): 299-311, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749002

RESUMEN

Recent studies have identified exposure to environmental levels of ozone as a risk factor for the development of acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI) that can develop in humans with sepsis. The aim of this study was to develop a murine model of ALI to mechanistically explore the impact of ozone exposure on ARDS development. Mice were exposed to ozone (0.8 ppm, 3 h) or air control followed 24 h later by intravenous administration of 3 mg/kg lipopolysaccharide (LPS) or PBS. Exposure of mice to ozone + LPS caused alveolar hyperplasia; increased BAL levels of albumin, IgM, phospholipids, and proinflammatory mediators including surfactant protein D and soluble receptor for advanced glycation end products were also detected in BAL, along with markers of oxidative and nitrosative stress. Administration of ozone + LPS resulted in an increase in neutrophils and anti-inflammatory macrophages in the lung, with no effects on proinflammatory macrophages. Conversely, the numbers of resident alveolar macrophages decreased after ozone + LPS; however, expression of Nos2, Arg1, Cxcl1, Cxcl2, Ccl2 by these cells increased, indicating that they are activated. These findings demonstrate that ozone sensitizes the lung to respond to endotoxin, resulting in ALI, oxidative stress, and exacerbated pulmonary inflammation, and provide support for the epidemiologic association between ozone exposure and ARDS incidence.


Asunto(s)
Modelos Animales de Enfermedad , Endotoxemia , Lipopolisacáridos , Estrés Oxidativo , Ozono , Animales , Ozono/toxicidad , Estrés Oxidativo/efectos de los fármacos , Endotoxemia/inducido químicamente , Endotoxemia/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Ratones , Ratones Endogámicos C57BL , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/química , Inflamación/inducido químicamente , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo
4.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513841

RESUMEN

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.


Asunto(s)
Acetilcisteína , Metabolismo Energético , Lesión Pulmonar , Mecloretamina , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Acetilcisteína/farmacología , Mecloretamina/toxicidad , Masculino , Metabolismo Energético/efectos de los fármacos , Ratas , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratas Sprague-Dawley , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Sustancias para la Guerra Química/toxicidad
5.
J Pharmacol Exp Ther ; 388(2): 586-595, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37188530

RESUMEN

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause pulmonary injury that can progress to fibrosis. NM toxicity is associated with an influx of inflammatory macrophages in the lung. Farnesoid X receptor (FXR) is a nuclear receptor involved in bile acid and lipid homeostasis that has anti-inflammatory activity. In these studies, we analyzed the effects of FXR activation on lung injury, oxidative stress, and fibrosis induced by NM. Male Wistar rats were exposed to phosphate-buffered saline (vehicle control) or NM (0.125 mg/kg) by intratracheal Penncentury-MicroSprayer aerosolization; this was followed by treatment with the FXR synthetic agonist, obeticholic acid (OCA, 15 mg/kg), or vehicle control (0.13-0.18 g peanut butter) 2 hours later and then once per day, 5 days per week thereafter for 28 days. NM caused histopathological changes in the lung, including epithelial thickening, alveolar circularization, and pulmonary edema. Picrosirius red staining and lung hydroxyproline content were increased, indicative of fibrosis; foamy lipid-laden macrophages were also identified in the lung. This was associated with aberrations in pulmonary function, including increases in resistance and hysteresis. Following NM exposure, lung expression of HO-1 and iNOS, and the ratio of nitrates/nitrites in bronchoalveolar lavage fluid (BAL), markers of oxidative stress increased, along with BAL levels of inflammatory proteins, fibrinogen, and sRAGE. Administration of OCA attenuated NM-induced histopathology, oxidative stress, inflammation, and altered lung function. These findings demonstrate that FXR plays a role in limiting NM-induced lung injury and chronic disease, suggesting that activating FXR may represent an effective approach to limiting NM-induced toxicity. SIGNIFICANCE STATEMENT: In this study, the role of farnesoid-X-receptor (FXR) in mustard vesicant-induced pulmonary toxicity was analyzed using nitrogen mustard (NM) as a model. This study's findings that administration of obeticholic acid, an FXR agonist, to rats reduces NM-induced pulmonary injury, oxidative stress, and fibrosis provide novel mechanistic insights into vesicant toxicity, which may be useful in the development of efficacious therapeutics.


Asunto(s)
Ácido Quenodesoxicólico/análogos & derivados , Lesión Pulmonar , Mecloretamina , Ratas , Masculino , Animales , Mecloretamina/toxicidad , Irritantes/efectos adversos , Ratas Wistar , Pulmón , Fibrosis , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/patología , Lesión Pulmonar/metabolismo , Estrés Oxidativo , Lípidos
6.
Toxicol Appl Pharmacol ; 460: 116359, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565939

RESUMEN

Macrophage efferocytosis of apoptotic neutrophils (PMNs) plays a key role in the resolution of inflammation. In these studies, we describe a novel flow cytometric method to assess efferocytosis of apoptotic PMNs. Resident alveolar macrophages and PMNs were collected from lungs of mice exposed to inhaled ozone (0.8 ppm, 3 h) followed by lipopolysaccharide (3 mg/kg, i.v.) to induce acute lung injury. PMNs were labeled with PKH26 or DilC18(5)-DS (D12730) cell membrane dye and then incubated with resident alveolar macrophages at a ratio of 5:1. After 90 min, macrophage efferocytosis was analyzed by flow cytometry and confirmed by confocal microscopy. Whereas alveolar macrophages incubated with D12730-labeled PMNs could readily be identified as efferocytotic or non-efferocytotic, this was not possible with PKH26 labeled PMNs due to confounding macrophage autofluorescence. Using D12730 labeled PMNs, subsets of resident alveolar macrophages were identified with varying capacities to perform efferocytosis, which may be linked to the activation state of these cells. Future applications of this method will be useful in assessing the role of efferocytosis in the resolution of inflammation in response to toxicant exposure.


Asunto(s)
Macrófagos Alveolares , Neutrófilos , Ratones , Animales , Neutrófilos/metabolismo , Macrófagos Alveolares/metabolismo , Citometría de Flujo , Fagocitosis , Inflamación/metabolismo , Apoptosis
7.
Toxicol Appl Pharmacol ; 454: 116208, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998709

RESUMEN

Nitrogen mustard (NM) is a cytotoxic vesicant known to cause acute lung injury which progresses to fibrosis; this is associated with a sequential accumulation of pro- and anti-inflammatory macrophages in the lung which have been implicated in NM toxicity. Farnesoid X receptor (FXR) is a nuclear receptor involved in regulating lipid homeostasis and inflammation. In these studies, we analyzed the role of FXR in inflammatory macrophage activation, lung injury and oxidative stress following NM exposure. Wild-type (WT) and FXR-/- mice were treated intratracheally with PBS (control) or NM (0.08 mg/kg). Bronchoalveolar lavage fluid (BAL) and lung tissue were collected 3, 14 and 28 d later. NM caused progressive histopathologic alterations in the lung including inflammatory cell infiltration and alveolar wall thickening and increases in protein and cells in BAL; oxidative stress was also noted, as reflected by upregulation of heme oxygenase-1. These changes were more prominent in male FXR-/- mice. Flow cytometric analysis revealed that loss of FXR resulted in increases in proinflammatory macrophages at 3 d post NM; this correlated with upregulation of COX-2 and ARL11, markers of macrophage activation. Markers of anti-inflammatory macrophage activation, CD163 and STAT6, were also upregulated after NM; this response was exacerbated in FXR-/- mice at 14 d post-NM. These findings demonstrate that FXR plays a role in limiting macrophage inflammatory responses important in lung injury and oxidative stress. Maintaining or enhancing FXR function may represent a useful strategy in the development of countermeasures to treat mustard lung toxicity.


Asunto(s)
Lesión Pulmonar Aguda , Mecloretamina , Lesión Pulmonar Aguda/patología , Animales , Ciclooxigenasa 2/metabolismo , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Irritantes/toxicidad , Lípidos , Pulmón , Activación de Macrófagos , Masculino , Mecloretamina/toxicidad , Ratones
8.
J Med Chem ; 65(9): 6903-6925, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35500229

RESUMEN

New antibiotics with either a novel mode of action or novel mode of inhibition are urgently needed to overcome the threat of drug-resistant tuberculosis (TB). The present study profiles new spiropyrimidinetriones (SPTs), DNA gyrase inhibitors having activity against drug-resistant Mycobacterium tuberculosis (Mtb), the causative agent of TB. While the clinical candidate zoliflodacin has progressed to phase 3 trials for the treatment of gonorrhea, compounds herein demonstrated higher inhibitory potency against Mtb DNA gyrase (e.g., compound 42 with IC50 = 2.0) and lower Mtb minimum inhibitor concentrations (0.49 µM for 42). Notably, 42 and analogues showed selective Mtb activity relative to representative Gram-positive and Gram-negative bacteria. DNA gyrase inhibition was shown to involve stabilization of double-cleaved DNA, while on-target activity was supported by hypersensitivity against a gyrA hypomorph. Finally, a docking model for SPTs with Mtb DNA gyrase was developed, and a structural hypothesis was built for structure-activity relationship expansion.


Asunto(s)
Mycobacterium tuberculosis , Inhibidores de Topoisomerasa II , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antituberculosos/química , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Girasa de ADN/genética , Bacterias Gramnegativas , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA