Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 11829, 2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34088914

RESUMEN

The occurrence of phlogopite and amphibole in mantle ultramafic rocks is widely accepted as the modal effect of metasomatism in the upper mantle. However, their simultaneous formation during metasomatic events and the related sub-solidus equilibrium with the peridotite has not been extensively studied. In this work, we discuss the geochemical conditions at which the pargasite-phlogopite assemblage becomes stable, through the investigation of two mantle xenoliths from Mount Leura (Victoria State, Australia) that bear phlogopite and the phlogopite + amphibole (pargasite) pair disseminated in a harzburgite matrix. Combining a mineralogical study and thermodynamic modelling, we predict that the P-T locus of the equilibrium reaction pargasite + forsterite = Na-phlogopite + 2 diopside + spinel, over the range 1.3-3.0 GPa/540-1500 K, yields a negative Clapeyron slope of -0.003 GPa K-1 (on average). The intersection of the P-T locus of supposed equilibrium with the new mantle geotherm calculated in this work allowed us to state that the Mount Leura xenoliths achieved equilibrium at 2.3 GPa /1190 K, that represents a plausible depth of ~ 70 km. Metasomatic K-Na-OH rich fluids stabilize hydrous phases. This has been modelled by the following equilibrium equation: 2 (K,Na)-phlogopite + forsterite = 7/2 enstatite + spinel + fluid (components: Na2O,K2O,H2O). Using quantum-mechanics, semi-empirical potentials, lattice dynamics and observed thermo-elastic data, we concluded that K-Na-OH rich fluids are not effective metasomatic agents to convey alkali species across the upper mantle, as the fluids are highly reactive with the ultramafic system and favour the rapid formation of phlogopite and amphibole. In addition, oxygen fugacity estimates of the Mount Leura mantle xenoliths [Δ(FMQ) = -1.97 ± 0.35; -1.83 ± 0.36] indicate a more reducing mantle environment than what is expected from the occurrence of phlogopite and amphibole in spinel-bearing peridotites. This is accounted for by our model of full molecular dissociation of the fluid and incorporation of the O-H-K-Na species into (OH)-K-Na-bearing mineral phases (phlogopite and amphibole), that leads to a peridotite metasomatized ambient characterized by reduced oxygen fugacity.

2.
Nanomaterials (Basel) ; 9(12)2019 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-31795123

RESUMEN

The main objective of this work was to evaluate the potential of Montmorillonite nanoclay (Mt), readily and inexpensively available, for the simultaneous adsorption (and removal) of two classes of pollutants: metal ions and dyes. The attention was focused on two "model" pollutants: Ce(III) and crystal violet (CV). The choice is due to the fact that they are widespread in wastewaters of various origins. These characteristics, together with their effect on human health, make them ideal for studies on water remediation. Moreover, when separated from wastewater, they can be recycled individually in industrial production with no or simple treatment. Clay/pollutant hybrids were prepared under different pH conditions and characterized through the construction of the adsorption isotherms and powder X-ray diffraction. The adsorption behavior of the two contaminants was revealed to be significantly different: the Langmuir model reproduces the adsorption isotherm of Ce(III) better, thus indicating that the clay offers a unique adsorption site to the metal ions, while the Freundlich model proved to be the most reliable for the uptake of CV which implies heterogeneity of adsorption sites. Moreover, metal ions do not adsorb at all under acidic conditions, whereas the dye is able to adsorb under all the investigated conditions. The possibility to modulate the adsorption features by simply changing the pH conditions was successfully employed to develop an efficient protocol for the removal and separation of the different components from aqueous solutions mimicking wastewaters.

3.
Acta Crystallogr A Found Adv ; 74(Pt 2): 102-111, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29493539

RESUMEN

The critical points analysis of electron density, i.e. ρ(x), from ab initio calculations is used in combination with the catastrophe theory to show a correlation between ρ(x) topology and the appearance of instability that may lead to transformations of crystal structures, as a function of pressure/temperature. In particular, this study focuses on the evolution of coalescing non-degenerate critical points, i.e. such that ∇ρ(xc) = 0 and λ1, λ2, λ3 ≠ 0 [λ being the eigenvalues of the Hessian of ρ(x) at xc], towards degenerate critical points, i.e. ∇ρ(xc) = 0 and at least one λ equal to zero. The catastrophe theory formalism provides a mathematical tool to model ρ(x) in the neighbourhood of xc and allows one to rationalize the occurrence of instability in terms of electron-density topology and Gibbs energy. The phase/state transitions that TiO2 (rutile structure), MgO (periclase structure) and Al2O3 (corundum structure) undergo because of pressure and/or temperature are here discussed. An agreement of 3-5% is observed between the theoretical model and experimental pressure/temperature of transformation.

4.
Artículo en Inglés | MEDLINE | ID: mdl-25703359

RESUMEN

UV-vis-spectra evolution of Nile Red loaded into Tween 20 micelles with pH and [Tween 20] have been analysed in a non-conventional manner by exploiting the deconvolution method. The number of buried sub-bands has been found to depend on both pH and bio-surfactant concentration, whose positions have been associated to Nile Red confined in aqueous solution and in the three micellar solubilisation sites. For the first time, by using an extended classical two-pseudo-phases-model, the robust treatment of the spectrophotometric data allows the estimation of Nile Red binding constant to the available loci. Hosting capability towards Nile Red is exalted by the pH enhancement. Comparison between binding constant values classically evaluated and those estimated by the deconvolution protocol unveiled that overall binding values perfectly match with the mean values of the local binding sites. This result suggests that deconvolution procedure provides more precise and reliable values, which are more representative of drug confinement.


Asunto(s)
Micelas , Oxazinas/química , Polisorbatos/química , Espectrofotometría Ultravioleta/métodos , Tensoactivos/química , Sitios de Unión , Solubilidad
5.
J Colloid Interface Sci ; 434: 77-88, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25170600

RESUMEN

Systematic kinetic and equilibrium studies on the lead ions removal ability by Ca-alginate gel beads have been performed by varying several internal parameters, namely, number of gel beads, nature and composition of the ionic medium and pH, which allowed us to model a wastewater in order to closely reproduce the composition of a real sample. Moreover, the effects brought about the different ionic species present in the reacting medium have been evaluated. Differential Pulse Anodic Stripping Voltammetry (DP-ASV), has been systematically used to perform kinetic and equilibrium measurements over continuous time in a wide range of concentration. Kinetic and equilibrium data have been quantitatively analyzed by means of robust approach both for the non-linear regression and the subsequent residuals analysis in order to significantly improve the results in terms of precision and accuracy. Alginate gel beads have been characterized by SEM and an investigation on their swelling behavior has also been made. Removal efficiency of the calcium-alginate gel beads has been calculated and results obtained have showed a relevant dependence on ionic strength, composition of ionic media, pH of solution and number of gel beads. The number of gel beads takes part as key crucial components, i.e., the higher the number of beads the greater the amount of Pb(II) species removed from the sample, the lower the time needed to reach the maximum removal efficiency of 90%.

6.
Int J Pharm ; 457(1): 224-36, 2013 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-24076230

RESUMEN

The adsorption profiles of the antibiotic metronidazole (MNE) into the K10-montmorillonite (MMT-K10) clay and the subsequent release have been investigated as a function of pH and MNE/MMT-K10 ratio, in order to evaluate the potential of the MNE/MMT-K10 hybrids as controlled drug delivery system. The adsorption mechanism has been first elucidated by performing complementary equilibrium and kinetic studies and through the X-ray diffractometry (XRD) characterization of the obtained composite materials. The gathered results allowed us to propose a mechanism consisting of a multi-step pathway involving the neutral and the cationic form of the drug, which interact with different sites of the clay surfaces, i.e. the interlayer region and the faces of the lamella. In a second step the drug release kinetics has been studied under physiological pH mimicking conditions simulating the oral drug administration and delivery. For the sake of comparison the commercial formulation has also been employed for the release studies. The investigation of the release profiles and the comparison with the commercial formulation of the drug reveal that the new-tailor made formulation could be fruitful exploited for successfully prolonged the action of drug in the desired site.


Asunto(s)
Antibacterianos/química , Bentonita/química , Sistemas de Liberación de Medicamentos , Metronidazol/química , Nanoestructuras/química , Antibacterianos/administración & dosificación , Colon/metabolismo , Metronidazol/administración & dosificación
7.
Acta Crystallogr A ; 67(Pt 5): 456-68, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21844650

RESUMEN

The use of robust techniques in crystal structure multipole refinements of small molecules as an alternative to the commonly adopted weighted least squares is presented and discussed. As is well known, the main disadvantage of least-squares fitting is its sensitivity to outliers. The elimination from the data set of the most aberrant reflections (due to both experimental errors and incompleteness of the model) is an effective practice that could yield satisfactory results, but it is often complicated in the presence of a great number of bad data points, whose one-by-one elimination could become unattainable. This problem can be circumvented by means of a robust least-squares regression that minimizes the influence of outliers. This work is aimed at showing the capability of a robust regression to achieve an higher reliability of the least-squares estimates with respect to the traditional weighted least-squares crystal structure refinement in terms of both accuracy and precision. The results can be considered encouraging and represent a starting point for future developments.

8.
Acta Crystallogr A ; 61(Pt 4): 471-7, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15973001

RESUMEN

The identification of the actual outliers in a least-squares crystal-structure model refinement and their subsequent elimination from the data set is a non-trivial task that has to be carried out carefully when a high level of accuracy of the estimates is required. One of the most suitable tools for detecting the influence of each data entry on the regression is the identification of ;leverage points'. On the other hand, the recognition of the actual statistical outliers is effectively possible by using some diagnostics as a function of the leverage, such as Cook's distance, DFFITS and FVARATIO. The evaluation of these estimators makes it possible to achieve a reliable identification of the outliers and the elimination of those that impair the least-squares fit. In this paper, a procedure for filtering data points based on this kind of analysis for crystallographic X-ray data is presented and discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA