Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 20416, 2024 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223259

RESUMEN

Autism spectrum disorders (ASD) are complex neurodevelopmental conditions characterized by impairments in social communication, repetitive behaviors, and restricted interests. Epigenetic modifications serve as critical regulators of gene expression playing a crucial role in controlling brain function and behavior. Lysine (K)-specific demethylase 6B (KDM6B), a stress-inducible H3K27me3 demethylase, has emerged as one of the highest ASD risk genes, but the precise effects of KDM6B mutations on neuronal activity and behavioral function remain elusive. Here we show the impact of KDM6B mosaic brain knockout on the manifestation of different autistic-like phenotypes including repetitive behaviors, social interaction, and significant cognitive deficits. Moreover, KDM6B mosaic knockout display abnormalities in hippocampal excitatory synaptic transmission decreasing NMDA receptor mediated synaptic transmission and plasticity. Understanding the intricate interplay between epigenetic modifications and neuronal function may provide novel insights into the pathophysiology of ASD and potentially inform the development of targeted therapeutic interventions.


Asunto(s)
Trastorno del Espectro Autista , Histona Demetilasas con Dominio de Jumonji , Ratones Noqueados , Transmisión Sináptica , Animales , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Transmisión Sináptica/genética , Trastorno del Espectro Autista/genética , Ratones , Encéfalo/metabolismo , Plasticidad Neuronal/genética , Conducta Animal , Hipocampo/metabolismo , Epigénesis Genética , Masculino , Sinapsis/metabolismo
2.
BMC Biol ; 22(1): 142, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926759

RESUMEN

BACKGROUND: The VPS50 protein functions in synaptic and dense core vesicle acidification, and perturbations of VPS50 function produce behavioral changes in Caenorhabditis elegans. Patients with mutations in VPS50 show severe developmental delay and intellectual disability, characteristics that have been associated with autism spectrum disorders (ASDs). The mechanisms that link VPS50 mutations to ASD are unknown. RESULTS: To examine the role of VPS50 in mammalian brain function and behavior, we used the CRISPR/Cas9 system to generate knockouts of VPS50 in both cultured murine cortical neurons and living mice. In cultured neurons, KO of VPS50 did not affect the number of synaptic vesicles but did cause mislocalization of the V-ATPase V1 domain pump and impaired synaptic activity, likely as a consequence of defects in vesicle acidification and vesicle content. In mice, mosaic KO of VPS50 in the hippocampus altered synaptic transmission and plasticity and generated robust cognitive impairments. CONCLUSIONS: We propose that VPS50 functions as an accessory protein to aid the recruitment of the V-ATPase V1 domain to synaptic vesicles and in that way plays a crucial role in controlling synaptic vesicle acidification. Understanding the mechanisms controlling behaviors and synaptic function in ASD-associated mutations is pivotal for the development of targeted interventions, which may open new avenues for therapeutic strategies aimed at ASD and related conditions.


Asunto(s)
Ratones Noqueados , Vesículas Sinápticas , Animales , Ratones , Conducta Animal/fisiología , Encéfalo/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Vesículas Sinápticas/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
3.
Biol Res ; 57(1): 17, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38664786

RESUMEN

BACKGROUND: Disseminated neoplasia (DN) is a proliferative cell disorder of the circulatory system of bivalve mollusks. The disease is transmitted between individuals and can also be induced by external chemical agents such as bromodeoxyuridine. In Mya arenaria, we have cloned and characterized an LTR-retrotransposon named Steamer. Steamer mRNA levels and gene copy number correlates with DN and can be used as a marker of the disease. So far, the only mollusk where a retrotransposon expression relates to DN is Mya arenaria. On the other hand, it has been reported that the Chilean blue mussel Mytilus chilensis can also suffers DN. Our aim was to identify retrotransposons in Mytilus chilensis and to study their expression levels in the context of disseminated neoplasia. RESULTS: Here we show that 7.1% of individuals collected in August 2018, from two farming areas, presents morphological characteristics described in DN. Using Steamer sequence to interrogate the transcriptome of M. chilensis we found two putative retrotransposons, named Steamer-like elements (MchSLEs). MchSLEs are present in the genome of M. chilensis and MchSLE1 is indeed an LTR-retrotransposon. Neither expression, nor copy number of the reported MchSLEs correlate with DN status but both are expressed at different levels among individual animals. We also report that in cultured M. chilensis haemocytes MchSLEs1 expression can be induced by bromodeoxyuridine. CONCLUSIONS: We conclude that SLEs present in Mytilus chilensis are differentially expressed among individuals and do not correlate with disseminated neoplasia. Treatment of haemocytes with a stressor like bromodeoxyuridine induces expression of MchSLE1 suggesting that in Mytilus chilensis environmental stressors can induce activation of LTR-retrotransposon.


Asunto(s)
Mytilus , Retroelementos , Animales , Mytilus/genética , Retroelementos/genética , Chile
4.
Biol. Res ; 572024.
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1564032

RESUMEN

Background Disseminated neoplasia (DN) is a proliferative cell disorder of the circulatory system of bivalve mollusks. The disease is transmitted between individuals and can also be induced by external chemical agents such as bromodeoxyuridine. In Mya arenaria, we have cloned and characterized an LTR-retrotransposon named Steamer. Steamer mRNA levels and gene copy number correlates with DN and can be used as a marker of the disease. So far, the only mollusk where a retrotransposon expression relates to DN is Mya arenaria. On the other hand, it has been reported that the Chilean blue mussel Mytilus chilensis can also suffers DN. Our aim was to identify retrotransposons in Mytilus chilensis and to study their expression levels in the context of disseminated neoplasia. Results Here we show that 7.1% of individuals collected in August 2018, from two farming areas, presents morphological characteristics described in DN. Using Steamer sequence to interrogate the transcriptome ofM. chilensis we found two putative retrotransposons, named Steamer-like elements (MchSLEs). MchSLEs are present in the genome of M. chilensis and MchSLE1 is indeed an LTR-retrotransposon. Neither expression, nor copy number of the reported MchSLEs correlate with DN status but both are expressed at different levels among individual animals. We also report that in cultured M. chilensis haemocytes MchSLEs1 expression can be induced by bromodeoxyuridine. Conclusions We conclude that SLEs present in Mytilus chilensis are differentially expressed among individuals and do not correlate with disseminated neoplasia. Treatment of haemocytes with a stressor like bromodeoxyuridine induces expression of MchSLE1 suggesting that in Mytilus chilensis environmental stressors can induce activation of LTR-retrotransposon.

5.
Front Cell Dev Biol ; 11: 1227723, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538398

RESUMEN

Neurodevelopmental disorders have been associated with genetic mutations that affect cellular function, including chromatin regulation and epigenetic modifications. Recent studies in humans have identified mutations in KMT2C, an enzyme responsible for modifying histone tails and depositing H3K4me1 and H3K4me3, as being associated with Kleefstra syndrome 2 and autism spectrum disorder (ASD). However, the precise role of KMT2C mutations in brain disorders remains poorly understood. Here we employed CRISPR/Cas9 gene editing to analyze the effects of KMT2C brain specific knockout on animal behavior. Knocking out KMT2C expression in cortical neurons and the mouse brain resulted in decreased KMT2C levels. Importantly, KMT2C brain specific knockout animals exhibited repetitive behaviors, social deficits, and intellectual disability resembling ASD. Our findings shed light on the involvement of KMT2C in neurodevelopmental processes and establish a valuable model for elucidating the cellular and molecular mechanisms underlying KMT2C mutations and their relationship to Kleefstra syndrome 2 and ASD.

6.
Elife ; 82019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31686650

RESUMEN

Transmissible cancers, in which cancer cells themselves act as an infectious agent, have been identified in Tasmanian devils, dogs, and four bivalves. We investigated a disseminated neoplasia affecting geographically distant populations of two species of mussels (Mytilus chilensis in South America and M. edulis in Europe). Sequencing alleles from four loci (two nuclear and two mitochondrial) provided evidence of transmissible cancer in both species. Phylogenetic analysis of cancer-associated alleles and analysis of diagnostic SNPs showed that cancers in both species likely arose in a third species of mussel (M. trossulus), but these cancer cells are independent from the previously identified transmissible cancer in M. trossulus from Canada. Unexpectedly, cancers from M. chilensis and M. edulis are nearly identical, showing that the same cancer lineage affects both. Thus, a single transmissible cancer lineage has crossed into two new host species and has been transferred across the Atlantic and Pacific Oceans and between the Northern and Southern hemispheres.


Asunto(s)
Organismos Acuáticos , Mytilus , Neoplasias/veterinaria , Alelos , Animales , Europa (Continente)/epidemiología , Neoplasias/epidemiología , Neoplasias/patología , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , América del Sur/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA