Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873143

RESUMEN

Early life microbe-immune interactions at barrier surfaces have lasting impacts on the trajectory towards health versus disease. Monocytes, macrophages and dendritic cells are primary sentinels in barrier tissues, yet the salient contributions of commensal-myeloid crosstalk during tissue development remain poorly understood. Here, we identify that commensal microbes facilitate accumulation of a population of monocytes in neonatal skin. Transient postnatal depletion of these monocytes resulted in heightened IL-17A production by skin T cells, which was particularly sustained among CD4+ T cells into adulthood and sufficient to exacerbate inflammatory skin pathologies. Neonatal skin monocytes were enriched in expression of negative regulators of the IL-1 pathway. Functional in vivo experiments confirmed a key role for excessive IL-1R1 signaling in T cells as contributing to the dysregulated type 17 response in neonatal monocyte-depleted mice. Thus, a commensal-driven wave of monocytes into neonatal skin critically facilitates long-term immune homeostasis in this prominent barrier tissue.

2.
J Invest Dermatol ; 143(5): 790-800.e12, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36496196

RESUMEN

FLG variants underlie ichthyosis vulgaris and increased risk of atopic dermatitis, conditions typified by disruption of the skin microbiome and cutaneous immune response. Yet, it remains unclear whether neonatal skin barrier compromise because of FLG deficiency alters the quality of commensal-specific T cells and the functional impact of such responses. To address these questions, we profiled changes in the skin barrier and early cutaneous immune response of neonatal C57BL/6 Flg‒/‒ and wild-type mice using single-cell RNA sequencing, flow cytometry, and other modalities. Flg‒/‒ neonates showed little alteration in transepidermal water loss or lipid- or corneocyte-related gene expression. However, they showed increases in barrier disruption genes, epidermal dye penetration, and numbers of skin CD4+ T cells. Using an engineered strain of Staphylococcus epidermidis (S. epidermidis 2W) to study the response to neonatal skin colonization, we found that commensal-specific CD4+ T cells were skewed in Flg‒/‒ pups toward effector rather than regulatory T cells. This altered response persisted into adulthood, where it was typified by T helper 17 (Th17) cells and associated with increased susceptibility to imiquimod-induced skin inflammation. Thus, subtle but impactful differences in neonatal barrier function in Flg‒/‒ mice are accompanied by a skewed commensal-specific CD4+ response, with enduring consequences for skin immune homeostasis.


Asunto(s)
Dermatitis Atópica , Proteínas de Filamentos Intermediarios , Animales , Ratones , Bacterias , Linfocitos T CD4-Positivos , Dermatitis Atópica/genética , Proteínas de Filamentos Intermediarios/genética , Ratones Endogámicos C57BL , Piel
3.
Cell Rep ; 39(9): 110891, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649365

RESUMEN

Resident microbes in skin and gut predominantly impact local immune cell function during homeostasis. However, colitis-associated neutrophilic skin disorders suggest possible breakdown of this compartmentalization with disease. Using a model wherein neonatal skin colonization by Staphylococcus epidermidis facilitates generation of commensal-specific tolerance and CD4+ regulatory T cells (Tregs), we ask whether this response is perturbed by gut inflammation. Chemically induced colitis is accompanied by intestinal expansion of S. epidermidis and reduces gut-draining lymph node (dLN) commensal-specific Tregs. It also results in reduced commensal-specific Tregs in skin and skin-dLNs and increased skin neutrophils. Increased CD4+ circulation between gut and skin dLN suggests that the altered cutaneous response is initiated in the colon, and resistance to colitis-induced effects in Cd4creIl1r1fl/fl mice implicate interleukin (IL)-1 in mediating the altered commensal-specific response. These findings provide mechanistic insight into observed connections between inflammatory skin and intestinal diseases.


Asunto(s)
Colitis , Inmunidad , Animales , Colitis/inducido químicamente , Inflamación , Ratones , Piel , Staphylococcus epidermidis , Linfocitos T Reguladores
4.
Mucosal Immunol ; 15(4): 551-561, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35361906

RESUMEN

Our skin contributes critically to health via its role as a barrier tissue, carefully regulating passage of key substrates while also providing defense against exogenous threats. Immunological processes are integral to almost every skin function and paramount to our ability to live symbiotically with skin commensal microbes and other environmental stimuli. While many parallels can be drawn to immunobiology at other mucosal sites, skin immunity demonstrates unique features that relate to its distinct topography, chemical composition and microbial ecology. Here we provide an overview of skin as an immune organ, with reference to the broader context of mucosal immunology. We review paradigms of innate as well as adaptive immune function and highlight how skin-specific structures such as hair follicles and sebaceous glands interact and contribute to these processes. Finally, we highlight for the mucosal immunology community a few emerging areas of interest for the skin immunity field moving forward.


Asunto(s)
Membrana Mucosa , Simbiosis , Biología , Inmunidad Innata
5.
Cell Host Microbe ; 29(5): 742-744, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33984276

RESUMEN

Microbes can boost cutaneous immune defense and skin reparative capacity. However, mechanistic understanding, especially of the latter, remains sparse. In this issue of Cell Host & Microbe, Wang et al. (2021) shed light on this, demonstrating that bacteria contribute to hair follicle neogenesis after skin wounding via keratinocyte-intrinsic IL-1R1 signaling.


Asunto(s)
Folículo Piloso , Piel , Animales , Bacterias , Ratones , Regeneración , Transducción de Señal
6.
Cell Host Microbe ; 26(6): 795-809.e5, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31784259

RESUMEN

The host must develop tolerance to commensal microbes and protective responses to infectious pathogens, yet the mechanisms enabling a privileged relationship with commensals remain largely unknown. Skin colonization by commensal Staphylococcus epidermidis facilitates immune tolerance preferentially in neonates via induction of antigen-specific regulatory T cells (Tregs). Here, we demonstrate that this tolerance is not indiscriminately extended to all bacteria encountered in this early window. Rather, neonatal colonization by Staphylococcus aureus minimally enriches for antigen-specific Tregs and does not prevent skin inflammation upon later-life exposure. S. aureus α-toxin contributes to this response by stimulating myeloid cell production of IL-1ß, which limits S. aureus-specific Tregs. Loss of α-toxin or the IL-1 receptor increases Treg enrichment, whereas topical application of IL-1ß or α-toxin diminishes tolerogenic responses to S. epidermidis. Thus, the preferential activation of a key alarmin pathway facilitates early discrimination of microbial "foe" from "friend," thereby preventing tolerance to a common skin pathogen.


Asunto(s)
Toxinas Bacterianas/inmunología , Receptores de Interleucina-1/metabolismo , Piel/microbiología , Infecciones Estafilocócicas/inmunología , Linfocitos T Reguladores/inmunología , Animales , Animales Recién Nacidos , Toxinas Bacterianas/metabolismo , Interacciones Microbiota-Huesped/inmunología , Tolerancia Inmunológica , Ratones , Receptores de Interleucina-1/inmunología , Transducción de Señal/inmunología , Staphylococcus aureus/inmunología , Staphylococcus epidermidis/inmunología , Simbiosis/inmunología , Virulencia/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA