Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 36(21): e2311745, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38300183

RESUMEN

The primary performance limitation in inverted perovskite-based solar cells is the interface between the fullerene-based electron transport layers and the perovskite. Atomic layer deposited thin aluminum oxide (AlOX) interlayers that reduce nonradiative recombination at the perovskite/C60 interface are developed, resulting in >60 millivolts improvement in open-circuit voltage and 1% absolute improvement in power conversion efficiency. Surface-sensitive characterizations indicate the presence of a thin, conformally deposited AlOx layer, functioning as a passivating contact. These interlayers work universally using different lead-halide-based absorbers with different compositions where the 1.55 electron volts bandgap single junction devices reach >23% power conversion efficiency. A reduction of metallic Pb0 is found and the compact layer prevents in- and egress of volatile species, synergistically improving the stability. AlOX-modified wide-bandgap perovskite absorbers as a top cell in a monolithic perovskite-silicon tandem enable a certified power conversion efficiency of 29.9% and open-circuit voltages above 1.92 volts for 1.17 square centimeters device area.

2.
Nat Commun ; 13(1): 4850, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35977921

RESUMEN

Carbon-carbon bond cleavage mechanisms play a key role in the selective deconstruction of alkanes and polyolefins. Here, we show that the product distribution, which encompasses carbon range and formation of unsaturated and isomerization products, serves as a distinctive feature that allows the reaction pathways of different catalysts to be classified. Co, Ni, or Ru nanoparticles immobilized on amorphous silica-alumina, Zeo-Y and ZSM-5, were evaluated as catalysts in the deconstruction of n-hexadecane model substrate with hydrogen to delineate between different mechanisms, i.e., monofunctional- (acid site dominated) or bifunctional-hydrocracking (acid site & metal site) versus hydrogenolysis (metal site dominated), established from the product distributions. The ZSM-5-based catalysts were further studied in the depolymerization of polyethylene. Based on these studies, the catalysts are plotted on an activity-mechanism map that functions as an expandable basis to benchmark catalytic activity and to identify optimal catalysts that afford specific product distributions. The systematic approach reported here should facilitate the acceleration of catalyst discovery for polyolefin depolymerization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA