Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Philos Trans R Soc Lond B Biol Sci ; 375(1804): 20190645, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32536309

RESUMEN

By 2100, global warming is predicted to significantly reduce the capacity of marine primary producers for long-chain polyunsaturated fatty acid (LC-PUFA) synthesis. Primary consumers such as harpacticoid copepods (Crustacea) might mitigate the resulting adverse effects on the food web by increased LC-PUFA bioconversion. Here, we present a high-quality de novo transcriptome assembly of the copepod Platychelipus littoralis, exposed to changes in both temperature (+3°C) and dietary LC-PUFA availability. Using this transcriptome, we detected multiple transcripts putatively coding for LC-PUFA-bioconverting front-end fatty acid (FA) desaturases and elongases, and performed phylogenetic analyses to identify their relationship with sequences of other (crustacean) taxa. While temperature affected the absolute FA concentrations in copepods, LC-PUFA levels remained unaltered even when copepods were fed an LC-PUFA-deficient diet. While this suggests plasticity of LC-PUFA bioconversion within P. littoralis, none of the putative front-end desaturase or elongase transcripts was differentially expressed under the applied treatments. Nevertheless, the transcriptome presented here provides a sound basis for future ecophysiological research on harpacticoid copepods. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.


Asunto(s)
Proteínas de Artrópodos/análisis , Copépodos/metabolismo , Ácidos Grasos/metabolismo , Transcriptoma , Animales , Ambiente
2.
Mar Environ Res ; 144: 92-101, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30638843

RESUMEN

The Belgian part of the North Sea (BPNS) is subjected to multiple environmental stressors. The impact of these stressors includes the modulation of fatty acid (FA) composition of the zooplankton. This study recorded temporal and spatial patterns of the FA profiles of two dominant calanoid copepods within the BPNS: Temora longicornis (Müller, 1785) and Acartia clausi (Giesbrecht, 1889). By means of distance-based linear modelling and by applying multi model inference to generalized additive models, environmental stressors were linked to patterns of the FA profiles of these species. The FA profiles of A. clausi and T. longicornis showed distinct intraspecific, spatial and temporal differences within the BPNS. Temperature and algal food quality (marked by the ratio of silicate concentration to dissolved inorganic nitrogen concentration, SiO4/DIN) were the most important drivers of seasonal fluctuations in the DHA/EPA ratio of both species. DHA/EPA ratio can be used as marker for stress in copepods in the BPNS in order to have a quick indication of food quality changes at the basis of the food web.


Asunto(s)
Copépodos/química , Ácidos Grasos/análisis , Estaciones del Año , Estrés Fisiológico , Animales , Bélgica , Cadena Alimentaria , Modelos Lineales , Mar del Norte , Análisis Espacio-Temporal , Zooplancton
3.
Ecol Appl ; 28(5): 1342-1353, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29698586

RESUMEN

Human activities increasingly impact the functioning of marine food webs, but anthropogenic stressors are seldom included in ecological study designs. Diet quality, as distinct from just diet quantity, has moreover rarely been highlighted in food web studies in a stress context. We measured the effects of metal and pesticide stress (copper and atrazine) on the contribution of a benthic intertidal diatom community to two processes that are key to the functioning of intertidal systems: biomass (diet quantity) and lipid (diet quality) production. We then examined if stressors affected diatom functioning by selectively targeting the species contributing most to functioning (selective stress effects) or by changing the species' functional contribution (context-dependent effects). Finally, we tested if stress-induced changes in diet quality altered the energy flow to the diatoms' main grazers (harpacticoid copepods). Diatom diet quantity was reduced by metal stress but not by low pesticide levels due to the presence of an atrazine-tolerant, mixotrophic species. Selective effects of the pesticide reduced diatom diet quality by 60% and 75% at low and high pesticide levels respectively, by shifting diatom community structure from dominance by lipid-rich species toward dominance by an atrazine-tolerant, but lipid-poor, species. Context-dependent effects did not affect individual diatom lipid content at low levels of both stressors, but caused diatoms to lose 40% of their lipids at high copper stress. Stress-induced changes in diet quality predicted the energy flow from the diatoms to their copepod consumers, which lost half of their lipids when feeding on diatoms grown under low and high pesticide and high metal stress. Selective pesticide effects were a more important threat for trophic energy transfer than context-dependent effects of both stressors, with shifts in diatom community structure affecting the energy flow to their copepod grazers at stress levels where no changes in diatom lipid content were detected.


Asunto(s)
Atrazina/toxicidad , Copépodos/fisiología , Cobre/toxicidad , Diatomeas/efectos de los fármacos , Cadena Alimentaria , Contaminantes Químicos del Agua/toxicidad , Animales , Biomasa , Copépodos/efectos de los fármacos , Diatomeas/fisiología , Herbicidas/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos
4.
J Therm Biol ; 57: 44-53, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27033038

RESUMEN

Dietary lipids, and in particular the essential fatty acids (EFA), EPA (20:5ω3) and DHA (22:6ω3), guarantee the well-being of animals and are recognized for their potential bottom-up control on animal populations. They are introduced in marine ecosystems through primary producers and when grazed upon, they are consumed, incorporated or modified by first-level consumers. As the availability of EFA in the ecosystem is affected by ambient temperature, the predicted rise in ocean temperature might alter the availability of these EFA at the basis of marine food webs. Despite the FA bioconversion capacity of certain benthic copepod species, their lipid (FA) response to varying temperatures is understudied. Therefore, the temperate, intertidal copepod Platychelipus littoralis was offered a mono and mixed diatom diet at 4, 15 °C (normal range) and at 24 °C (elevated temperature) to investigate the combined effects of temperature and resource availability on its FA content and composition. P. littoralis showed a flexible thermal acclimation response. Cold exposure increased the degree of FA unsaturation and the EPA%, and induced a shift towards shorter chain FA in the copepod's membranes. Furthermore, a mixed diet reduced the impact of heat stress on the copepod's membrane FA composition. Temperature affected the trophic transfer of EPA and DHA differently. While dietary resources could fully compensate for the temperature effects on total lipid and EPA content in the copepods, no such counterweigh was observed for the DHA dynamics. Heat stress lowered the DHA concentration in copepods regardless of the resources available and this implies negative effects for higher trophic levels.


Asunto(s)
Respuesta al Choque por Frío , Copépodos/metabolismo , Dieta , Ácidos Grasos/metabolismo , Respuesta al Choque Térmico , Animales , Membrana Celular/metabolismo , Copépodos/fisiología , Cadena Alimentaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA