Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 16(5): 7197-7209, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35290009

RESUMEN

Cellular responses to nanoparticles (NPs) have been largely studied in cell populations, providing averaged values that often misrepresent the true molecular processes that occur in the individual cell. To understand how a cell redistributes limited molecular resources to achieve optimal response and survival requires single-cell analysis. Here we applied multiplex single molecule-based fluorescence in situ hybridization (fliFISH) to quantify the expression of 10 genes simultaneously in individual intact cells, including glycolysis and glucose transporter genes, which are critical for restoring and maintaining energy balance. We focused on individual gill epithelial cell responses to lithium cobalt oxide (LCO) NPs, which are actively pursued as cathode materials in lithium-ion batteries, raising concerns about their impact on the environment and human health. We found large variabilities in the expression levels of all genes between neighboring cells under the same exposure conditions, from only a few transcripts to over 100 copies in individual cells. Gene expression ratios among the 10 genes in each cell uncovered shifts in favor of genes that play key roles in restoring and maintaining energy balance. Among these genes are isoforms that can secure and increase glycolysis rates more efficiently, as well as genes with multiple cellular functions, in addition to glycolysis, including DNA repair, regulation of gene expression, cell cycle progression, and proliferation. Our study uncovered prioritization of gene expression in individual cells for restoring energy balance under LCO NP exposures. Broadly, our study gained insight into single-cell strategies for redistributing limited resources to achieve optimal response and survival under stress.


Asunto(s)
Cobalto , Nanopartículas , Humanos , Hibridación Fluorescente in Situ , Isoformas de Proteínas
2.
Langmuir ; 37(7): 2256-2267, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33560854

RESUMEN

Supported lipid bilayers (SLBs) have proven to be valuable model systems for studying the interactions of proteins, peptides, and nanoparticles with biological membranes. The physicochemical properties (e.g., topography, coating) of the solid substrate may affect the formation and properties of supported phospholipid bilayers, and thus, subsequent interactions with biomolecules or nanoparticles. Here, we examine the influence of support coating (SiO2 vs Si3N4) and topography [sensors with embedded vs protruding gold nanodisks for nanoplasmonic sensing (NPS)] on the formation and subsequent interactions of supported phospholipid bilayers with the model protein cytochrome c and with cationic polymer-wrapped quantum dots using quartz crystal microbalance with dissipation monitoring and NPS techniques. The specific protein and nanoparticle were chosen because they differ in the degree to which they penetrate the bilayer. We find that bilayer formation and subsequent non-penetrative association with cytochrome c were not significantly influenced by substrate composition or topography. In contrast, the interactions of nanoparticles with SLBs depended on the substrate composition. The substrate-dependence of nanoparticle adsorption is attributed to the more negative zeta-potential of the bilayers supported by the silica vs the silicon nitride substrate and to the penetration of the cationic polymer wrapping the nanoparticles into the bilayer. Our results indicate that the degree to which nanoscale analytes interact with SLBs may be influenced by the underlying substrate material.


Asunto(s)
Membrana Dobles de Lípidos , Nanopartículas , Membrana Celular , Tecnicas de Microbalanza del Cristal de Cuarzo , Dióxido de Silicio
3.
NanoImpact ; 22: 100318, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-35559975

RESUMEN

Surface properties of engineered nanomaterials (ENMs) have been shown to influence their interaction with biological systems. However, studies to date have largely focused on hydrophilic materials, likely due to biocompatibility concerns and aqueous exposure conditions necessary for many model systems. Therefore, a knowledge gap exists in nanotoxicity literature for impacts of hydrophobic ENMs, with studies of hydrophobic materials largely limited to carbon ENMs. Here we demonstrate testing of hydrophobic quantum dots (QDs) using the nematode C. elegans, a model soil organism cultured on solid media and amenable to hydrophobic exposures. To evaluate the influence of hydrophobicity, we compared CdSe/ZnS QDs functionalized with hydrophobic trioctylphosphine oxide (TOPO) to identical QDs functionalized with hydrophilic dihydrolipoic acid-polyethylene glycol (DHLA-PEG) and alternative hydrophobic CdSe/ZnS QDs functionalized with oleic acid (OA). Results show that hydrophobic TOPO QDs are significantly more toxic than hydrophilic DHLA-PEG QDs, and substitution of TOPO with OA yields relatively non-toxic hydrophobic QDs. Fluorescence microscopy shows TOPO QDs loosely associated with the organism's cuticle, but atomic force microscopy shows no difference in cuticle structure from exposure. Importantly, TOPO ligand alone is as toxic as TOPO QDs, and our data suggests that TOPO may impact neuromuscular function, perhaps upon displacement from the QD surface. This study demonstrates the importance of examining ligand-specific impacts of hydrophobic ENMs and indicates OA-functionalized QDs as a potential alternative to TOPO QDs for reduced toxicity.


Asunto(s)
Puntos Cuánticos , Animales , Caenorhabditis elegans , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Puntos Cuánticos/toxicidad , Propiedades de Superficie
4.
Chem Sci ; 12(7): 2441-2455, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34164010

RESUMEN

Multicolor carbon dots (CDs) have been developed recently and demonstrate great potential in bio-imaging, sensing, and LEDs. However, the fluorescence mechanism of their tunable colors is still under debate, and efficient separation methods are still challenging. Herein, we synthesized multicolor polymeric CDs through solvothermal treatment of citric acid and urea in formamide. Automated reversed-phase column separation was used to achieve fractions with distinct colors, including blue, cyan, green, yellow, orange and red. This work explores the physicochemical properties and fluorescence origins of the red, green, and blue fractions in depth with combined experimental and computational methods. Three dominant fluorescence mechanism hypotheses were evaluated by comparing time-dependent density functional theory and molecular dynamics calculation results to measured characteristics. We find that blue fluorescence likely comes from embedded small molecules trapped in carbonaceous cages, while pyrene analogs are the most likely origin for emission at other wavelengths, especially in the red. Also important, upon interaction with live cells, different CD color fractions are trafficked to different sub-cellular locations. Super-resolution imaging shows that the blue CDs were found in a variety of organelles, such as mitochondria and lysosomes, while the red CDs were primarily localized in lysosomes. These findings significantly advance our understanding of the photoluminescence mechanism of multicolor CDs and help to guide future design and applications of these promising nanomaterials.

5.
Nano Lett ; 19(3): 1990-1997, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30773885

RESUMEN

Engineered nanoparticles (NPs) can negatively impact biological systems through induced generation of reactive oxygen species (ROS). Overproduced ROS cause biochemical damage and hence need to be effectively buffered by a sophisticated cellular oxidative stress response system. How this complex cellular system, which consists of multiple enzymes, responds to NP-induced ROS is largely unknown. Here, we apply a single cell analysis to quantitatively evaluate 10 key ROS responsive genes simultaneously to understand how the cell prioritizes tasks and reallocates resources in response to NP-induced oxidative stress. We focus on rainbow trout gill epithelial cells-a model cell type for environmental exposure-and their response to the massive generation of ROS induced by lithium cobalt oxide (LCO) NPs, which are extensively used as cathode materials in lithium ion batteries. Using multiplexed fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) in single cells, we found a shift in the expression of oxidative stress response genes with initial increase in genes targeting superoxide species, followed by increase in genes targeting peroxide and hydroxyl species. In contrast, Li+ and Co2+, at concentrations expected to be shed from the NPs, did not induce ROS generation but showed a potent inhibition of transcription for all 10 stress response genes. Taken together, our findings suggest a "two-hit" model for LCO NP toxicity, where the intact LCO NPs induce high levels of ROS that elicit sequential engagement of stress response genes, while the released metal ions suppress the expression of these genes. Consequently, these effects synergistically drive the exposed cells to become more vulnerable to ROS stress and damage.


Asunto(s)
Cobalto/farmacología , Nanopartículas del Metal/química , Estrés Oxidativo/efectos de los fármacos , Óxidos/farmacología , Supervivencia Celular/efectos de los fármacos , Cobalto/química , Perfilación de la Expresión Génica/métodos , Células Hep G2 , Humanos , Nanopartículas del Metal/administración & dosificación , Óxidos/química , Especies Reactivas de Oxígeno/química , Análisis de la Célula Individual/métodos
6.
Nanotoxicology ; 12(10): 1166-1181, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30451563

RESUMEN

Metal oxide and phosphate nanoparticles (NPs) are ubiquitous in emerging applications, ranging from energy storage to catalysis. Cobalt-containing NPs are particularly important, where their widespread use raises questions about the relationship between composition, structure, and potential for environmental impacts. To address this gap, we investigated the effects of lithiated metal oxide and phosphate NPs on rainbow trout gill epithelial cells, a model for environmental exposure. Lithium cobalt oxide (LCO) NPs significantly reduced cell viability at10 µg/mL, while a 10-fold higher concentration of lithiated cobalt hydroxyphosphate (LCP) NPs was required to significantly reduce viability. Exposure to Li+ and Co2+ alone, at concentrations relevant to ion released from the NPs, did not reduce cell viability and minimally impacted reactive oxygen species (ROS) levels. Both LCO- and LCP-NPs were found within membrane-bound organelles. However, only LCP-NPs underwent rapid and complete dissolution in artificial lysosomal fluid. Unlike LCP-NPs, LCO-NPs significantly increased intracellular ROS, could be found within abnormal multilamellar bodies, and induced formation of intracellular vacuoles. Increased p53 gene expression, measured in individual cells, was observed at sub-toxic concentrations of both LCO- and LCP-NPs, implicating both in inductions of cellular damage and stress at concentrations approaching predicted environmental levels. Our results implicate the intact NP, not the dissolved ions, in the observed adverse effects and show that LCO-NPs significantly impact cell viability accompanied by increase in intracellular ROS and formation of organelles indicative of cell stress, while LCP-NPs have minimal adverse effects, possibly due to their rapid dissolution in acidic organelles.


Asunto(s)
Cobalto/toxicidad , Células Epiteliales/efectos de los fármacos , Branquias/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Oncorhynchus mykiss , Óxidos/toxicidad , Fosfatos/química , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Expresión Génica/efectos de los fármacos , Branquias/citología , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Propiedades de Superficie , Proteína p53 Supresora de Tumor/genética
7.
Langmuir ; 34(41): 12369-12378, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30184424

RESUMEN

The cytoplasmic membrane represents an essential barrier between the cytoplasm and the environment external to cells. Interaction with nanomaterials can alter the integrity of the cytoplasmic membrane through the formation of holes and membrane thinning, which can ultimately lead to adverse biological impacts. Here we use supported lipid bilayers as experimental models for the cytoplasmic membrane to investigate the impact of quantum dots functionalized with the cationic polymer poly(diallyldimethylammonium chloride) (PDDA) on membrane structure. Using a quartz crystal microbalance with dissipation monitoring we show that the positively charged quantum dots attach to and induce structural rearrangement to zwitterionic bilayers in solely the liquid-disordered phase and in those containing phase-segregated liquid-ordered domains. Real-time atomic force microscopy imaging revealed that PDDA-coated quantum dots and, to a lesser extent, PDDA itself induced the disappearance of liquid-ordered domains. We hypothesize this effect is due to an increase in energy per unit area caused by collisions between PDDA-coated quantum dots at the membrane surface. This increase in free energy per area exceeds the approximate free-energy change associated with membrane mixing between the liquid-ordered and liquid-disordered phases and results in the destabilization of membrane domains.

8.
Environ Sci Technol ; 51(19): 11075-11084, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28817268

RESUMEN

Changes to nanoparticle surface charge, colloidal stability, and hydrodynamic properties induced by interaction with natural organic matter (NOM) warrant consideration in assessing the potential for these materials to adversely impact organisms in the environment. Here, we show that acquisition of a coating, or "corona", of NOM alters the hydrodynamic and electrokinetic properties of diamond nanoparticles (DNPs) functionalized with the polycation poly(allylamine HCl) in a manner that depends on the NOM-to-DNP concentration ratio. The NOM-induced changes to DNP properties alter subsequent interactions with model biological membranes and the Gram-negative bacterium Shewanella oneidensis MR-1. Suwannee River NOM induces changes to DNP hydrodynamic diameter and apparent ζ-potential in a concentration-dependent manner. At low NOM-to-DNP ratios, DNPs aggregate to a limited extent but retain a positive ζ-potential apparently due to nonuniform adsorption of NOM molecules leading to attractive electrostatic interactions between oppositely charged regions on adjacent DNP surfaces. Diamond nanoparticles at low NOM-to-DNP ratios attach to model membranes to a larger extent than in the absence of NOM (including those incorporating lipopolysaccharide, a major bacterial outer membrane component) and induce a comparable degree of membrane damage and toxicity to S. oneidensis. At higher NOM-to-DNP ratios, DNP charge is reversed, and DNP aggregates remain stable in suspension. This charge reversal eliminates DNP attachment to model membranes containing the highest LPS contents studied due to electrostatic repulsion and abolishes membrane damage to S. oneidensis. Our results demonstrate that the effects of NOM coronas on nanoparticle properties and interactions with biological surfaces can depend on the relative amounts of NOM and nanoparticles.


Asunto(s)
Diamante , Nanopartículas , Ríos , Shewanella , Suspensiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA