Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microsyst Nanoeng ; 8: 33, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35371537

RESUMEN

Controlling fluid flow in capillaric circuits is a key requirement to increase their uptake for assay applications. Capillary action off-valves provide such functionality by pushing an occluding bubble into the channel using a difference in capillary pressure. Previously, we utilized the binary switching mode of this structure to develop a powerful set of fundamental fluidic valving operations. In this work, we study the transistor-like qualities of the off-valve and provide evidence that these structures are in fact functionally complementary to electronic junction field effect transistors. In view of this, we propose the new term capillaric field effect transistor to describe these types of valves. To support this conclusion, we present a theoretical description, experimental characterization, and practical application of analog flow resistance control. In addition, we demonstrate that the valves can also be reopened. We show modulation of the flow resistance from fully open to pinch-off, determine the flow rate-trigger channel volume relationship and demonstrate that the latter can be modeled using Shockley's equation for electronic transistors. Finally, we provide a first example of how the valves can be opened and closed repeatedly.

2.
Lab Chip ; 21(1): 205-214, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33295906

RESUMEN

Capillary systems are a promising technology for point-of-care microfluidics, since they are pre-programmable and self-powered. This work introduces "off valves" as a key building block for capillaric circuits, providing easy-to-use, multi-purpose valving functionality and autonomous flow control. To this end we present a set of switching valve designs that use trigger channels and liquid input alone to close or open connections between channels in a highly controllable fashion. The key element of all these valve designs is a new off trigger valve, which is characterised in detail here and holds the potential for transistor-like switching and resistance tuning. As an example for the potential applications of switching valves, we demonstrate how they can be used for flow resistance control in a complex microfluidic circuit and for sequential chemical loading into a reaction chamber. Use of the switching valves for the latter in particular allowed for the tuning of incubation times and volumetric measurement, thus confirming applicability of the valves for automated and self-powered immunoassays in point-of-care environments.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Inmunoensayo , Sistemas de Atención de Punto , Presión
3.
Sensors (Basel) ; 19(11)2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159238

RESUMEN

The integration of chemo-responsive hydrogels into fragile microelectromechanical systems (MEMS) with reflective surfaces in the micron to submicron range is presented. Direct laser writing (DLW) for 3D microstructuring of chemoresponsive "smart" hydrogels on sensitive microstructures is demonstrated and discussed in detail, by production of thin hydrogel layers and discs with a controllable lateral size of 2 to 5 µm and a thickness of some hundred nm. Screening results of polymerizing laser settings for precision microstructuring were determined by controlling crosslinking and limiting active chain diffusion during polymerization with macromers. Macromers are linear polymers with a tunable amount of multifunctional crosslinker moieties, giving access to a broad range of different responsive hydrogels. To demonstrate integration into fragile MEMS, the gel was deposited by DLW onto a resonator with a 200 nm thick sensing plate with high precision. To demonstrate the applicability for sensors, proof of concept measurements were performed. The polymer composition was optimized to produce thin reproducible layers and the feasibility of 3D structures with the same approach is demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA