Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Intervalo de año de publicación
1.
Acta Physiologica Sinica ; (6): 887-902, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1007798

RESUMEN

Cardiovascular disease (CVD) is an important factor threatening the health of the elderly. Aging leads to changes in the structure and function of the cardiovascular system, which increases the risk of CVD in the elderly. Cardiac aging is characterized by increased left ventricular wall thickness, increased degree of myocardial fibrosis, increased cardiac hardness, and decreased cardiac function, while vascular aging is characterized by enlarged lumen, thickened wall, and endothelial dysfunction. Promoting healthy cardiovascular aging means reducing the age-related cardiovascular dysfunction and the risks of CVD. Exercise is a crucial means for the treatment and rehabilitation of CVD. Exercise reduces the risk factors of CVD, remodels the cardiovascular structure, and increases the resistance of heart to detrimental stimulus, which promotes healthy cardiovascular aging. The improved mitochondrial function via exercise plays a key role in the health effects of exercise. In addition, exercise promotes the secretion of exerkines in various tissues and organs, which plays a role in reducing inflammation, improving metabolism, inhibiting apoptosis, etc., thus benefiting cardiovascular health. This review discusses the mechanism and potential application of exercise in promoting healthy cardiovascular aging. Exploring the specific mechanisms underlying exercise-induced cardiovascular health and formulating accurate exercise prescriptions for different populations is an important direction to promote healthy cardiovascular aging and prevent CVD.


Asunto(s)
Humanos , Anciano , Corazón , Ejercicio Físico , Envejecimiento , Enfermedades Cardiovasculares/prevención & control , Factores de Riesgo
2.
Acta Physiologica Sinica ; (6): 209-216, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-927596

RESUMEN

Mounting evidence has shown that exercise exerts extensive beneficial effects, including preventing and protecting against chronic diseases, through improving metabolism and other mechanisms. Recent studies have shown that exercise preconditioning affords significant cardioprotective effects. However, whether exercise preconditioning improves high fat diet (HFD)-induced obesity and lipid metabolic disorder remains unknown. The study was aimed to explore the effects of exercise preconditioning on HFD-induced obesity and lipid metabolic disorder in mice. 4-week-old C57BL/6 mice were subjected to swimming or sedentary control for 3 months, and then were fed with normal diet (ND) or HFD for 4 more months. The results showed that the blood glucose was decreased, and the glucose tolerance and grip strength were increased in exercised mice after training. Exercise preconditioning failed to improve HFD-induced body weight gain, but improved HFD-induced glucose intolerance. Exercise preconditioning showed no significant effects on both exercise capacity and physical activity in ND- and HFD-fed mice. HFD feeding increased total cholesterol and low density lipoprotein (LDL) levels in circulation, promoted subcutaneous fat and epididymal fat accumulation in mice. Exercise preconditioning increased circulating high density lipoprotein (HDL) and decreased circulating LDL, without affecting the subcutaneous fat and epididymal fat in HFD-fed mice. HFD feeding increased liver weight and hepatic total cholesterol contents, and dysregulated the expressions of several mitochondria function-related proteins in mice. These abnormalities were partially reversed by exercise preconditioning. Together, these results suggest that exercise preconditioning can partially reverse the HFD-induced lipid metabolic disorder and hepatic dysfunction, and these beneficial effects of exercise sustain for a period of time, even after exercise is discontinued.


Asunto(s)
Animales , Ratones , Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Lípidos , Hígado , Ratones Endogámicos C57BL , Obesidad
3.
J Zhejiang Univ Sci B ; 7(9): 702-7, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16909470

RESUMEN

Sorption of carbon tetrachloride (CT) by zero-valent iron (ZVI) is the rate-limiting step in the degradation of CT, so the sorption capacity of ZVI is of great importance. This experiment was aimed at enhancing the sorption of CT by ZVI and the degradation rate of CT by modification of surfactants. This study showed that ZVI modified by cationic surfactants has favorable synergistic effect on the degradation of CT. The CT degradation rate of ZVI modified by cetyl pyridinium bromide (CPB) was higher than that of the unmodified ZVI by 130%, and the CT degradation rate of ZVI modified by cetyl trimethyl ammonium bromide (CTAB) was higher than that of the unmodified ZVI by 81%. This study also showed that the best degradation effect is obtained at the near critical micelle concentrations (CMC) and that high loaded cationic surfactant does not have good synergistic effect on the degradation due to its hydrophilicity and the block in surface reduction sites. Furthermore degradation of CT by ZVI modified by nonionic surfactant has not positive effect on the degradation as the ionic surfactant and the ZVI modified by anionic surfactant has hardly any obvious effects on the degradation.


Asunto(s)
Tetracloruro de Carbono/química , Hierro/química , Tensoactivos/química , Concentración de Iones de Hidrógeno , Contaminación del Agua/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA