Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 15(23): 8905-8912, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38873057

RESUMEN

By integrating a tailor-made donor-acceptor (D-A) ligand in a metal-organic framework (MOF), a material with unprecedented features emerges. The ligand combines a pair of cyano groups as acceptors with four sulfanylphenyls as donors, which expose each a carboxylic acid as coordination sites. Upon treatment with zinc nitrate in a solvothermal synthesis, the MOF is obtained. The new material combines temperature-assisted reverse intersystem crossing (RISC) and intersystem crossing (ISC). As these two mechanisms are active in different temperature windows, thermal switching between their characteristic emission wavelengths is observed for this material. The two mechanisms can be activated by both, one-photon absorption (OPA) and two-photon absorption (TPA) resulting in a large excitement window ranging from ultraviolet (UV) over visible light (VL) to near infrared (NIR). Furthermore, the emission features of the material are pH sensitive, such that its application potential is demonstrated in a first ammonia sensor.

3.
Adv Sci (Weinh) ; 11(13): e2308123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240582

RESUMEN

Fluoro- and chlorofluorocabons (FC/CFCs) are important refrigerants, solvents, and fluoropolymers in industry while being toxic and carrying high global warming potential. Detection and reclamation of FC/CFCs based on adsorption technology with highly selective adsorbents is important to labor safety and environmental protection. Herein, the study reports an integrated method to combine capture, separation, enrichment, and analysis of representative FC/CFCs (chlorodifluoromethane(R22) and 1,1,1,2-tetrafluoroethane (R134a)) by using the highly stable and porous Zr-MOF, DUT-67. Gas adsorption and breakthrough experiments demonstrate that DUT-67 has high R22/R134a uptake (124/116 cm3 g-1) and excellent R22/R134a/CO2 separation performance (IAST selectivities of R22/CO2 and R134a/CO2 ranging from 51.4 to 33.3, and 31.1 to 25.8), even in rather low concentration and humid conditions. A semi-quantitative analysis protocol is set up to analyze the low concentrations of R22/R134a based on the high selective R22/R134a adsorption ability, fast adsorption kinetics, water-resistant utility, facile regeneration, and excellent recyclability of DUT-67. In situ single-crystal X-ray diffraction, theoretical calculations, and in situ diffuse reflectance infrared Fourier transform spectra have been employed to understand the adsorption mechanism. This work may provide a potential adsorbent for purge and trap technique under room temperature, thus promoting the application of MOFs for VOCs sampling and quantitative analysis.

4.
ACS Appl Mater Interfaces ; 16(1): 847-852, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38153916

RESUMEN

Acetylene (C2H2) is widely used as a raw material for producing various downstream commodities in the petrochemical and electronic industry. Therefore, the acquisition of high-purity C2H2 from a C2H2/CO2 mixture produced by partial methane combustion or thermal hydrocarbon cracking is of great significance yet highly challenging due to their similar physical and chemical properties. Herein, we report an anionic metal-organic framework (MOF) named LIFM-210, which has Li+ cations in the pores and shows a higher adsorption affinity for C2H2 than CO2. LIFM-210 is constructed by a unique tetranuclear Ni(II) cluster acting as a 10-connected node and an organic ligand acting as a 5-connected node. Single-component adsorption and transient breakthrough experiments demonstrate the good C2H2 selective separation performance of LIFM-210. Theoretical calculations revealed that Li+ ions strongly prefer C2H2 to CO2 and are primary adsorption sites, playing vital roles in the selective separation of C2H2/CO2.

5.
J Am Chem Soc ; 145(26): 14354-14364, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37348117

RESUMEN

Deep SO2 removal and recovery as industrial feedstock are of importance in flue-gas desulfurization and natural-gas purification, yet developing low-cost and scalable physisorbents with high efficiency and recyclability remains a challenge. Herein, we develop a viable synthetic protocol to produce DUT-67 with a controllable MOF structure, excellent crystallinity, adjustable shape/size, milli-to-kilogram scale, and consecutive production by recycling the solvent/modulator. Furthermore, simple HCl post-treatment affords depurated DUT-67-HCl featuring ultrahigh purity, excellent chemical stability, fully reversible SO2 uptake, high separation selectivity (SO2/CO2 and SO2/N2), greatly enhanced SO2 capture capacity, and good reusability. The SO2 binding mechanism has been elucidated by in situ X-ray diffraction/infrared spectroscopy and DFT/GCMC calculations. The single-step SO2 separation from a real quaternary N2/CO2/O2/SO2 flue gas containing trace SO2 is implementable under dry and 50% humid conditions, thus recovering 96% purity. This work may pave the way for future SO2 capture-and-recovery technology by pushing MOF syntheses toward economic cost, scale-up production, and improved physiochemical properties.

6.
ACS Appl Mater Interfaces ; 14(40): 45444-45450, 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36178410

RESUMEN

Adsorptive separation based on porous solid adsorbents has emerged as an excellent effective alternative to energy-intensive conventional separation methods in a low energy cost and high working capacity manner. However, there are few stable mesoporous metal-organic frameworks (MOFs) for efficient purification of methane from other light hydrocarbons in natural gas. Herein, we report a series of stable mesoporous MOFs, MIL-101-Cr/Fe/Fe-NH2, for efficient separation of CH4 and C3H8 from a ternary mixture CH4/C2H6/C3H8. Experimental results show that all three MOFs possess excellent thermal, acid/basic, and hydrothermal stability. Single-component adsorption suggested that they have high C3H8 adsorption capacity and commendable selectivity for C3H8 and C2H6 over CH4. Transient breakthrough experiments further certified the ability of direct separation of CH4 from simulated natural gas and indirect recovery of C3H8 from the packing column. Theoretical calculations illustrated that the van der Waals force proportional to the molecular weight is the key factor and that the structural integrity and defect can impact separation performances.

7.
ACS Appl Mater Interfaces ; 14(28): 32105-32111, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35791739

RESUMEN

A nitro-decorated microporous covalent organic framework, TpPa-NO2, has been synthesized in a gram scale with a one-pot reaction. It can effectively selectively separate C2H4 from a C2H2/C2H4/CO2 mixture and capture CO2 from CO2/N2 based on ideal adsorption solution theory calculations and transient breakthrough experiments. Theoretical calculations illustrated that the hydrogen atoms of imine bonds, carbonyl oxygen, and nitro group show high affinity toward C2H2 and CO2, playing vital roles in efficient separation.

8.
Inorg Chem ; 60(23): 17440-17444, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34756021

RESUMEN

Global warming associated with CO2 emission has led to frequent extreme weather events in recent years. Carbon capture using porous solid adsorbents is promising for addressing the greenhouse effect. Herein, we report a series of robust metal-organic cages (MOCs) featuring various functional groups, such as methyl and amine groups, for CO2/N2 separation. Significantly, the amine-group-functionalized MOC-QW-3-NH2 displays the best selective CO2 adsorption performance, as confirmed by single-component adsorption and transient breakthrough experiments. The distinct CO2 adsorption mechanism has been well studied via theoretical calculations, confirming that the amine groups play a vital role for efficiently selective CO2 adsorption resulting from hierarchical adsorbate-framework interaction.

9.
ACS Appl Mater Interfaces ; 13(34): 40713-40723, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34405673

RESUMEN

Due to the ultralow amounts of C3H8 and C2H6 gases, to design and synthesize water-stable MOFs that are promising for real-world efficient pipeline natural gas (NG) upgrading by the recovery of individual C3H8 and C2H6 gases is still a great challenge. Here, a N/O/F heteroatom-rich and rooflike [Cu(II)4Cu(I)2(COO)4(tetrazolyl)6] cluster-based ultra-microporous tsi-MOF (SNNU-Bai68) was afforded as a multiple heteroatom-rich and curved-surface-shaped cluster-based ultra-microporous MOF and the first porous MOF based upon such rooflike [Cu(II)xCu(I)y(tetrazolyl)z](2x+y-z)+ cluster. In SNNU-Bai68, the rooflike cluster was further assembled into a 1D chain secondary building block (SBB), which led to a high density of accessible potential adsorptive sites. Very interestingly, it exhibited the most promising balance of high gas adsorption uptakes at 0.01, 0.03, and 0.05 bar, high C3H8/CH4, C3H8/C2H6, and C2H6/CH4 adsorption selectivities, moderate adsorption enthalpies, and high water and chemical stability for pipeline natural gas upgrading by the recovery of individual C3H8 and C2H6 gases, which was further confirmed by the breakthrough experiments of the gas mixtures with/without 74% RH. Furthermore, the SC-XRD and GCMC studies revealed that the successful separation of C3H8, C2H6, and CH4 gases in SNNU-Bai68 is due to different synergistic effects of H-bonds between the frameworks at three adsorptive sites around each rooflike cluster and those different gas molecules, which were initially described systematically by the number of H atoms from the gas molecules, the total number of H-bonds within the synergistic H-bonds, and the binding energy of the framework at an adsorption site toward the gas molecules. In addition, this work may provide a method for the construction of a multiple heteroatom-rich and curved-surface-shaped cluster-based ultra-microporous MOF as a novel approach to build MOFs with polar pore surfaces, suitable pore sizes, and unique pore shapes to maximize the synergistic H-bonds between the framework and guests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA