RESUMEN
The breakdown of O,O-diethyl-2,4-dinitrophenyl phosphate in formamide (FMD) solutions is assessed using kinetic studies and 31P nuclear magnetic resonance (NMR) analysis. Regiospecific nucleophilic amidolysis via P-O bond cleavage is observed, leading to non-toxic diester and FMD regeneration. In the systems evaluated, water plays an antagonistic role: while it is key for the breakdown of the reaction intermediate, it inhibits the nucleophilic activity of FMD by hydrogen bonding effects.
Asunto(s)
Fosfatos , Agua , Cinética , Espectroscopía de Resonancia Magnética , Organofosfatos/química , Fosfatos/química , Agua/químicaRESUMEN
Inspired by the synthetic and biological potential of organotellurium substances, a series of five- and six-membered ring organotelluranes containing a Te-O bond were synthesized and characterized. Theoretical calculations elucidated the mechanism for the oxidation-cyclization processes involved in the formation of the heterocycles, consistent with chlorine transfer to hydroxy telluride, followed by a cyclization step with simultaneous formation of the new Te-O bond and deprotonation of the OH group. Moreover, theoretical calculations also indicated anti-diastereoisomers to be major products for two chirality center-containing compounds. Antileishmanial assays against Leishmania amazonensis promastigotes disclosed 1,2λ4 -oxatellurane LQ50 (IC50 =4.1±1.0; SI=12), 1,2λ4 -oxatellurolane LQ04 (IC50 =7.0±1.3; SI=7) and 1,2λ4 -benzoxatellurole LQ56 (IC50 =5.7±0.3; SI=6) as more powerful and more selective compounds than the reference, being up to four times more active. A stability study supported by 125 Te NMR analyses showed that these heterocycles do not suffer structural modifications in aqueous-organic media or at temperatures up to 65 °C.
Asunto(s)
Telurio , Ciclización , Espectroscopía de Resonancia Magnética , Oxidación-ReducciónRESUMEN
Organophosphate (OP) pesticides are responsible for numerous human deaths every year. Nucleophilic substitution is an important method to mitigate the toxicity of obsolete stocks of OPs. Herein, the degradation of O,O-diethyl-2,4-dinitrophenyl phosphate (DEDNPP) and pesticide diethyl-4-nitrophenyl phosphate (Paraoxon) promoted by 1,2,4-triazole (TAZ) was investigated by means of kinetic studies, nuclear magnetic resonance (NMR) analyses, and theoretical calculations. Results showed fast degradation of OPs is promoted by the anionic form of the nucleophile (TAZ(-)) in pH > 8.5 (optimal at pH = 11). Rate enhancements of 106 and 105-fold in relation to neutral hydrolysis of DEDNPP and Paraoxon were observed, respectively, consistent with alpha-nucleophiles reactivity. TAZ(-) regioselectively promotes the degradation of DEDNPP via P-O bond break, forming a quickly hydrolyzable phosphorylated intermediate, regenerating the nucleophile. Calculations using M06-2X/6-311++G(d,p) level of theory revealed that the equivalent nitrogen atoms of TAZ(-) are the main nucleophilic center of the molecule. This study expands the knowledge on the reactivity of iminic compounds as detoxificant agents of OPs, indicating the efficiency and selectivity of TAZ(-) in aqueous medium, encouraging the design of novel TAZ-based catalysts.
Asunto(s)
Organofosfatos , Paraoxon , Aniones , Humanos , Hidrólisis , Cinética , TriazolesRESUMEN
The harmful impact caused by pesticides on human health and the environment necessitates the development of efficient degradation processes and control of prohibited stocks of such substances. Organophosphates (OPs) are among the most used agrochemicals in the world and their degradation can proceed through several possible pathways. Investigating the reactivity of OPs with nucleophilic species allows one to propose new and efficient catalyst scaffolds for use in detoxification. In light of the remarkable catalytic activity of imidazole (IMZ) at promoting dephosphorylation processes of OPs, the reactivity of 4(5)-hydroxymethylimidazole (HMZ) with diethyl-2,4-dinitrophenylphosphate (DEDNPP) and Paraoxon are evaluated by combining experimental and theoretical approaches. It is observed that HMZ is an efficient and regiospecific catalyst with reactivity modulated by competing tautomers. To propose an optimal IMZ-based catalyst, quantum chemical calculations were performed for monosubstituted 4(5)IMZ derivatives that might cleave DEDNPP. Both inductive effects and hydrogen bonding by the substituents are shown to influence barriers and mechanisms.
RESUMEN
The biological activity of tellurium compounds is closely related to the tellurium oxidation state or some of their structural features. Hypervalent dihalogenated organotelluranes 1-[butyl(dichloro)-λ4-tellanyl]-2-(methoxymethyl)benzene (1a) and 1-[butyl(dibromide)-λ4-tellanyl]-2-(methoxymethyl)benzene (1b) have been described as inhibitors of proteases (cysteine and threonine) and tyrosine phosphatases. However, poor attention has been given to their physicochemical properties. Here, a detailed investigation of the stability in water of these organotelluranes is reported using 125Te NMR analysis. Dihalogenated organotelluranes 1a and 1b were both stable in DMSO- d6 (from 25 to 75 °C), demonstrating their thermal stability. However, the addition of a phosphate buffer solution (pH 2-8) to 1a or 1b resulted in an immediate conversion to a new Te species, assumed to be the corresponding telluroxide. Similar behavior was observed in pure water, demonstrating the low chemical stability of these dihalogenated species in the presence of water. These results allow concluding that previous biological activity reported for dihalogenated organotelluranes 1a and 1b could be attributed to the corresponding derivatives from the reaction with water. In the same way as for AS-101, we demonstrated that organotelluranes 1a and 1b are not stable in aqueous solution. It suggests a proactive role of these organotelluranes in previously reported biological activity.
RESUMEN
Imidazole (IMZ) rings catalyze many biological dephosphorylation processes. The methyl positioning effect on IMZs reactivity has long intrigued scientists and its full understanding comprises a promising tool for designing highly efficient IMZ-based catalysts. We evaluated all monosubstituted methylimidazoles (xMEI) in the reaction with diethyl 2,4-dinitrophenyl phosphate by kinetics studies, NMR analysis and DFT calculations. All xMEI showed remarkable rate enhancements, up to 1.9×105 fold, compared with spontaneous hydrolysis. Unexpectedly, the electron-donating methyl group acts to decrease the reactivity of the xMEI compared to IMZ, except for 4(5)methylimidazole, (4(5)MEI). This behavior was attributed to both electronic and steric effects. Moreover, reaction intermediates were monitored by NMR and surprisingly, the reactivity of the two different 4(5)MEI tautomers was distinguished.
RESUMEN
Xylopia laevigata (Annonaceae), known locally as "meiú" or "pindaíba", is widely used in folk medicine in Northeastern Brazil. In the present work, we performed phytochemical analyses of the stem of X. laevigata, which led to the isolation of 19 alkaloids: (-)-roemerine, (+)-anonaine, lanuginosine, (+)-glaucine, (+)-xylopine, oxoglaucine, (+)-norglaucine, asimilobine, (-)-xylopinine, (+)-norpurpureine, (+)-N-methyllaurotetanine, (+)-norpredicentrine, (+)-discretine, (+)-calycinine, (+)-laurotetanine, (+)-reticuline, (-)-corytenchine, (+)-discretamine and (+)-flavinantine. The in vitro cytotoxic activity toward the tumor cell lines B16-F10 (mouse melanoma), HepG2 (human hepatocellular carcinoma), K562 (human chronic myelocytic leukemia) and HL-60 (human promyelocytic leukemia) and non-tumor peripheral blood mononuclear cells (PBMCs) was tested using the Alamar Blue assay. Lanuginosine, (+)-xylopine and (+)-norglaucine had the highest cytotoxic activity. Additionally, the pro-apoptotic effects of lanuginosine and (+)-xylopine were investigated in HepG2 cells using light and fluorescence microscopies and flow cytometry-based assays. Cell morphology consistent with apoptosis and a marked phosphatidylserine externalization were observed in lanuginosine- and (+)-xylopine-treated cells, suggesting induction of apoptotic cell death. In addition, (+)-xylopine treatment caused G2/M cell cycle arrest in HepG2 cells. These data suggest that X. laevigata is a potential source for cytotoxic alkaloids.
Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Aporfinas/farmacología , Citotoxinas/farmacología , Tallos de la Planta/química , Xylopia/química , Alcaloides/química , Alcaloides/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Aporfinas/química , Aporfinas/aislamiento & purificación , Citotoxinas/química , Citotoxinas/aislamiento & purificación , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HL-60 , Células Hep G2 , Humanos , Células K562 , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Ratones , Extractos Vegetales/química , Cultivo Primario de CélulasRESUMEN
Annona vepretorum Mart. (Annonaceae), popularly known as 'bruteira', has nutritional and medicinal uses. This study investigated the chemical composition and antitumour potential of the essential oil of A. vepretorum leaf alone and complexed with ß-cyclodextrin in a microencapsulation. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus and analysed using GC-MS and GC-FID. In vitro cytotoxicity of the essential oil and some of its major constituents in tumour cell lines from different histotypes was evaluated using the alamar blue assay. Furthermore, the in vivo efficacy of essential oil was demonstrated in mice inoculated with B16-F10 mouse melanoma. The essential oil included bicyclogermacrene (35.71%), spathulenol (18.89%), (E)-ß-ocimene (12.46%), α-phellandrene (8.08%), o-cymene (6.24%), germacrene D (3.27%) and α-pinene (2.18%) as major constituents. The essential oil and spathulenol exhibited promising cytotoxicity. In vivo tumour growth was inhibited by the treatment with the essential oil (inhibition of 34.46%). Importantly, microencapsulation of the essential oil increased in vivo tumour growth inhibition (inhibition of 62.66%).
Asunto(s)
Annona/química , Antineoplásicos Fitogénicos/farmacología , Melanoma Experimental/tratamiento farmacológico , Aceites Volátiles/farmacología , Monoterpenos Acíclicos , Adulto , Alquenos/farmacología , Animales , Antineoplásicos Fitogénicos/química , Monoterpenos Bicíclicos , Línea Celular Tumoral , Monoterpenos Ciclohexánicos , Ciclohexanonas/farmacología , Modelos Animales de Enfermedad , Composición de Medicamentos , Cromatografía de Gases y Espectrometría de Masas , Células Hep G2 , Humanos , Concentración 50 Inhibidora , Masculino , Ratones , Ratones Endogámicos C57BL , Monoterpenos/farmacología , Aceites Volátiles/química , Hojas de la Planta/química , Sesquiterpenos/farmacología , Sesquiterpenos de Germacrano/farmacología , Terpenos/farmacología , Adulto Joven , beta-Ciclodextrinas/farmacologíaRESUMEN
Duguetia gardneriana, popularly known in the Brazilian northeast as "jaquinha", is a species belonging to the family Annonaceae. The aim of this work was to assess the chemical composition and antitumor properties of the essential oil from the leaves of D. gardneriana in experimental models. The chemical composition of the essential oil was analyzed via gas chromatography-flame ionization detector and gas chromatography-mass spectrometry. In vitro cytotoxic activity was determined in cultured tumor cells, and in vivo antitumor activity was assessed in B16-F10-bearing mice. The identified compounds were ß-bisabolene (80.99%), elemicin (8.04%), germacrene D (4.15%), and cyperene (2.82%). The essential oil exhibited a cytotoxic effect, with IC50 values of 16.89, 19.16, 13.08, and 19.33 µg/mL being obtained for B16-F10, HepG2, HL-60, and K562 cell lines, respectively. On the other hand, ß-bisabolene was inactive in all of the tested tumor cell lines (showing IC50 values greater than 25 µg/mL). The in vivo analysis revealed tumor growth inhibition rates of 5.37-37.52% at doses of 40 and 80 mg/kg/day, respectively. Herein, the essential oil from the leaves of D. gardneriana presented ß-bisabolene as the major constituent and showed cytotoxic and antitumor potential.
Asunto(s)
Annonaceae/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Aceites Volátiles/farmacología , Adulto , Animales , Línea Celular Tumoral/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Masculino , Ratones Endogámicos C57BL , Sesquiterpenos Monocíclicos , Aceites Volátiles/química , Hojas de la Planta/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Pirogalol/análogos & derivados , Pirogalol/química , Pirogalol/farmacología , Sesquiterpenos/química , Sesquiterpenos/farmacología , Sesquiterpenos de Germacrano/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Zornia brasiliensis, popularly known as "urinária", "urinana", and "carrapicho", is a medicinal plant used in Brazilian northeast folk medicine as a diuretic and against venereal diseases. The aim of this study was to investigate the chemical composition and antitumor potential of the leaf essential oil of Z. brasiliensis. The essential oil was obtained by hydrodistillation using a Clevenger-type apparatus and analyzed by GC-MS and GC-FID. Its composition was characterized by the presence of trans-nerolidol, germacrene D, trans-caryophyllene, α-humulene, and farnesene as major constituents. In vitro cytotoxicity of the essential oil and some of its major constituents (trans-nerolidol, trans-caryophyllene, and α-humulene) was evaluated for tumor cell lines from different histotypes using the Alamar blue assay. The essential oil, but not the constituents tested, presented promising cytotoxicity. Furthermore, mice inoculated with B16-F10 mouse melanoma were used to confirm its in vivo effectiveness. An in vivo antitumor study showed tumor growth inhibition rates of 1.68-38.61â% (50 and 100 mg/kg, respectively). In conclusion, the leaf essential oil of Z. brasiliensis presents trans-nerolidol, germacrene D, trans-caryophyllene, α-humulene, and farnesene as major constituents and is able to inhibit cell proliferation in cultures as well as in tumor growth in mice.
Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Fabaceae/química , Melanoma Experimental/tratamiento farmacológico , Aceites Volátiles/uso terapéutico , Fitoterapia , Extractos Vegetales/uso terapéutico , Sesquiterpenos/uso terapéutico , Animales , Antineoplásicos Fitogénicos/farmacología , Proliferación Celular , Masculino , Ratones Endogámicos C57BL , Sesquiterpenos Monocíclicos , Aceites Volátiles/química , Aceites Volátiles/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Hojas de la Planta/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Aceites de Plantas/uso terapéutico , Sesquiterpenos Policíclicos , Sesquiterpenos/análisis , Sesquiterpenos/farmacología , Sesquiterpenos de Germacrano/análisisRESUMEN
Xylopia laevigata, popularly known as "meiú" and "pindaíba", is a medicinal plant used in the folk medicine of the Brazilian Northeast for several purposes. The chemical constituents of the essential oil from leaves of X. laevigata, collected from wild plants growing at three different sites of the remaining Atlantic forest in Sergipe State (Brazilian Northeast), were analyzed by GC/FID and GC/MS. The effect of the essential oil samples was assessed on tumor cells in culture, as well on tumor growth in vivo. All samples of the essential oil were dominated by sesquiterpene constituents. A total of 44 compounds were identified and quantified. Although some small differences were observed in the chemical composition, the presence of γ-muurolene (0.60-17.99%), δ-cadinene (1.15-13.45%), germacrene B (3.22-7.31%), α-copaene (3.33-5.98%), germacrene D (9.09-60.44%), bicyclogermacrene (7.00-14.63%), and (E)-caryophyllene (5.43-7.98%) were verified as major constituents in all samples of the essential oil. In the in vitro cytotoxic study, the essential oil displayed cytotoxicity to all tumor cell lines tested, with the different samples displaying a similar profile; however, they were not hemolytic or genotoxic. In the in vivo antitumor study, tumor growth inhibition rates were 37.3-42.5%. The treatment with the essential oil did not significantly affect body weight, macroscopy of the organs, or blood leukocyte counts. In conclusion, the essential oil from the leaves of X. laevigata is chemically characterized by the presence of γ-muurolene, δ-cadinene, germacrene B, α-copaene, germacrene D, bicyclogermacrene, and (E)-caryophyllene as major constituents and possesses significant in vitro and in vivo anticancer potential.