RESUMEN
Introduction: Phosphate-solubilizing bacteria that function through acidification (organic acid synthesis) or mineralization (production of enzymes such as phytase and phosphatases) have been explored as a biotechnological alternative to enhance plant access to phosphorus (P) retained in organic and inorganic forms in agricultural soils. This study tested the hypothesis that applying a biofertilizer composed of a recognized phosphate-solubilizing bacterium (Bacillus velezensis - endophytic strain BVPS01) and an underexplored plant growth-promoting bacterium (Lysinibacillus fusiformis - endophytic strain BVPS02) would improve the growth and grain yield of Glycine max L. plants. Methods: Initial in vitro tests assessed the functional traits of these bacteria, and a mix of strains BVPS01 and BVPS02 was produced and tested under field conditions to evaluate its agronomic efficiency. Results: The results confirmed the hypothesis that the tested biofertilizer enhances the agronomic performance of G. max plants in the field. The B. velezensis strain (BVPS01) was found to be more effective than the L. fusiformis strain (BVPS02) in solubilizing phosphates via the phosphatase enzyme production pathway, indicated by the expression of the phoC and phoD genes. In contrast, L. fusiformis was more effective in solubilizing phosphates through organic acid and phytase-related pathways, in addition to synthesizing indole-3-acetic acid and increasing the mitotic index in the root meristem of G. max plants. These strains exhibited biological compatibility, and the formulated product based on these rhizobacteria enhanced root development and increased the number of nodules and flowers, positively affecting 1000-grain weight, grain yield, and grain P content. Discussion: Thus, the tested biofertilizer demonstrated potential to improve root growth and increase both the yield and quality of soybean crops, making it a sustainable and low-cost strategy.
RESUMEN
MAIN CONCLUSION: Coffea karyotype organization and evolution has been uncovered by classical cytogenetics and cytogenomics. We revisit these discoveries and present new karyotype data. Coffea possesses ~ 124 species, including C. arabica and C. canephora responsible for commercial coffee production. We reviewed the Coffea cytogenetics, from the first chromosome counting, encompassing the karyotype characterization, chromosome DNA content, and mapping of chromosome portions and DNA sequences, until the integration with genomics. We also showed new data about Coffea karyotype. The 2n chromosome number evidenced the diploidy of almost all Coffea, and the C. arabica tetraploidy, as well as the polyploidy of other hybrids. Since then, other genomic similarities and divergences among the Coffea have been shown by karyotype morphology, nuclear and chromosomal C-value, AT and GC rich chromosome portions, and repetitive sequence and gene mapping. These cytogenomic data allowed us to know and understand the phylogenetic relations in Coffea, as well as their ploidy level and genomic origin, highlighting the relatively recent allopolyploidy. In addition to the euploidy, the role of the mobile elements in Coffea diversification is increasingly more evident, and the comparative analysis of their structure and distribution on the genome of different species is in the spotlight for future research. An integrative look at all these data is fundamental for a deeper understanding of Coffea karyotype evolution, including the key role of polyploidy in C. arabica origin. The 'Híbrido de Timor', a recent natural allotriploid, is also in the spotlight for its potential as a source of resistance genes and model for plant polyploidy research. Considering this, we also present some unprecedented results about the exciting evolutionary history of these polyploid Coffea.
Asunto(s)
Coffea , Coffea/genética , Café , Genómica , Cariotipo , Filogenia , PoliploidíaRESUMEN
Polyploidy is more than two chromosomal sets per nucleus, as the allotetraploid Coffea arabica. Due to allotetraploidy, C. arabica shows different phenotypes compare to diploid Coffea species, highlighting by beverage quality produced from its grains. Looking for the possibility of new phenotypes coupled with economic feature, considerable progress since 60's was reached for synthetic chromosome set doubling (CSD) in vitro, involving especially the antitubulin compounds, biological material, and used tissue culture pathway as the indirect somatic embryogenesis (ISE). Here, we aimed to regenerate autotetraploid and auto-alloctaploid plantlets of Coffea canephora and C. arabica, respectively, from a novel in vitro CSD procedure for Coffea. Exploring the ISE pathway, we treated the cellular aggregate suspensions (CAS) with 0.0 (control), 0.5, 1.5, or 2.5 mM of colchicine solution for 48, 72, or 96 h and maintained in liquid medium under constant orbital shaking. After transferring the CAS to semisolid media for somatic embryo regeneration, we considered it as cellular mass. Mature cotyledonary somatic embryos were only regenerated from cellular masses treated with 2.5 mM/48 h and 2.5 mM/72 h for C. canephora and with 0.5 mM/48 h for C. arabica. Evaluating the DNA ploidy level and the chromosome counting revealed that 36 (34.9%) plantlets of C. canephora were autotetraploids (4C = 2.86 pg, 2n = 4x = 44) and 61 (21.1%) of C. arabica were auto-alloctaploids (4C = 5.24 pg, 2n = 8x = 88). The CSD procedure, exploring the CAS proliferation and ISE pathway, promoted whole-genome duplication and resulted in a relatively high number of solid polyploids of both Coffea species. Due to distinct responses, DNA sequence fidelity (genetic) and global level of 5-methylcytosine (epigenetic) were evaluated. We observed that the increase of 5-methylcytosine levels was associated with somatic embryo regeneration from cells showing DNA sequence fidelity for the tested SSR primers. In conclusion, the adopted procedure for in vitro CSD is reproducible for induction, regeneration and propagation of Coffea polyploids and potentially other shrubbery and woody species. In view of the novelty of this procedure to generate new germplasm, we show the key issues and the steps of the CSD procedure.
RESUMEN
This study aimed to impute the genetic makeup of individual fishes of Serrasalmidae family on the basis of body weight and morphometric measurements. Eighty-three juveniles, belonging to the genetic groups Pacu, Pirapitinga, Tambaqui, Tambacu, Tambatinga, Patinga, Paqui and Piraqui, were separated into 16 water tanks in a recirculation system, with two tanks per genetic group, where they remained until they reached 495 days of age. They were then weighed and analyzed according to the following morphometric parameters: Standard Length (SL), Head Length (HL), Body Height (BH), and Body Width (BW). The identity of each fish was confirmed with two SNPs and two mitochondrial markers. Two analyses were performed: one for the validating the imputation and another for imputing a genetic composition of animals considered to be advanced hybrids (post F1). In both analyses, we used linear mixed models with a mixture of normal distributions to impute the genetic makeup of the fish based on phenotype. We applied the mixed models method, whereby the environmental effects were estimated by the Empirical Best Linear Unbiased Estimator (EBLUE) and genetic effects are considered random, obtaining the Empirical Best Linear Unbiased Predictor (EBLUP) from the general (GCA) and the specific (SCA) combining ability effects. The results showed that validation of the genetic makeup imputation based on body weight can be used because of the strong correlation between the observed and imputed genotype. The fish classified as advanced hybrids had a genetic composition with a high probability of belonging to known genotypes and there was consistency in genotype imputation according to the different characteristics used.
Asunto(s)
Animales , Characiformes/anatomía & histología , Characiformes/crecimiento & desarrollo , Characiformes/genética , LinajeRESUMEN
This study aimed to impute the genetic makeup of individual fishes of Serrasalmidae family on the basis of body weight and morphometric measurements. Eighty-three juveniles, belonging to the genetic groups Pacu, Pirapitinga, Tambaqui, Tambacu, Tambatinga, Patinga, Paqui and Piraqui, were separated into 16 water tanks in a recirculation system, with two tanks per genetic group, where they remained until they reached 495 days of age. They were then weighed and analyzed according to the following morphometric parameters: Standard Length (SL), Head Length (HL), Body Height (BH), and Body Width (BW). The identity of each fish was confirmed with two SNPs and two mitochondrial markers. Two analyses were performed: one for the validating the imputation and another for imputing a genetic composition of animals considered to be advanced hybrids (post F1). In both analyses, we used linear mixed models with a mixture of normal distributions to impute the genetic makeup of the fish based on phenotype. We applied the mixed models method, whereby the environmental effects were estimated by the Empirical Best Linear Unbiased Estimator (EBLUE) and genetic effects are considered random, obtaining the Empirical Best Linear Unbiased Predictor (EBLUP) from the general (GCA) and the specific (SCA) combining ability effects. The results showed that validation of the genetic makeup imputation based on body weight can be used because of the strong correlation between the observed and imputed genotype. The fish classified as advanced hybrids had a genetic composition with a high probability of belonging to known genotypes and there was consistency in genotype imputation according to the different characteristics used.(AU)
Asunto(s)
Animales , Characiformes/anatomía & histología , Characiformes/crecimiento & desarrollo , Characiformes/genética , Linaje , /análisisRESUMEN
Chicken red blood cells (CRBCs) are widely used as standards for DNA content determination. Cytogenetic data have shown that the Z sex chromosome is approximately twice as large as the W, so that the DNA content differs to some extent between male (ZZ) and female (ZW) chickens. Despite this fact, male and female CRBCs have been indiscriminately used in absolute genome size determination. Our work was conducted to verify whether the DNA content differences between male and female Gallus gallus domesticus "Leghorn" nuclei and ZZ/ZW chromosomes can be resolved by image cytometry (ICM). Air-dried smears stained by Feulgen reaction were used for nuclei analysis. Chicken metaphase spreads upon Feulgen staining were analyzed for obtaining quantitative information on the Z and W chromosomes. Before each capture session, we conducted quality control of the ICM instrumentation. Our results from nuclear measurements showed that the 2C value is 0.09 pg higher in males than in females. In chromosomes, we found that the Z chromosome shows 200% more DNA content than does the W chromosome. ICM demonstrated resolution power to discriminate low DNA content differences in genomes. We suggest prudence in the general use of CRBC 2C values as standards in comparative cytometric analysis.