Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Fungal Genet Biol ; 157: 103624, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34536506

RESUMEN

The yeast Spathaspora passalidarum is able to produce ethanol from D-xylose and D-glucose. However, it is not clear how xylose metabolism is affected by D-glucose when both sugars are available in the culture medium. The aims of this work were to evaluate the influence of D-glucose on D-xylose consumption, ethanol production, gene expression, and the activity of key xylose-metabolism enzymes under both aerobic and oxygen-limited conditions. Ethanol yields and productivities were increased in culture media containing D-xylose as the sole carbon source or a mixture of D-xylose and D-glucose. S. passalidarum preferentially consumed D-glucose in the co-fermentations, which is consistent with the reduction in expression of genes encoding the key xylose-metabolism enzymes. In the presence of D-glucose, the specific activities of xylose reductase (XR), xylitol dehydrogenase (XDH), and xylulokinase (XK) were lower. Interestingly, in accordance with other studies, the presence of 2-deoxyglucose (2DG) did not inhibit the growth of S. passalidarum in culture medium containing D-xylose as the sole carbon source. This indicates that a non-canonical repression pathway is acting in S. passalidarum. In conclusion, the results suggest that D-glucose inhibits D-xylose consumption and prevents the D-xylose-mediated induction of the genes encoding XR, XDH, and XK.


Asunto(s)
Saccharomycetales , Xilosa , Glucosa , Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA