Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(24): 16013-16022, 2017 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-28594016

RESUMEN

Via SAXS, herein, we studied how a sPEEK microstructure evolves when it is immersed in water at a wide range of temperatures (20-100 °C) and time scales (from a few hours to dozens of days). In particular, we scrutinized the behavior of sPEEK at the temperature and time associated with the appearance of a well-defined nanosegregated morphology. At 80 °C, we observed nanoscale swelling along with smoothing of the water/polymer interface over a long period of time (several days). Herein, two of the main membrane properties, i.e., water uptake and proton conductivity, were studied for different immersion times and temperatures. It was found that the abovementioned properties were remarkably correlated with the evolution of the membrane microstructure, which was partly conserved after drying. The present findings helped us to understand that the thermally activated evolutions observed at both the nanoscale and macroscale were associated with the sPEEK ß-relaxation crossover. Therefore, the very different swelling behaviors of sPEEK and Nafion are correlated to the much higher ß-relaxation of sPEEK vs. Nafion (75 °C vs. -20 °C - dry state). From a practical viewpoint, this study emphasizes, for membranes alternative to Nafion, the importance and impact of the membrane pretreatment on their functional properties.

2.
Nanoscale ; 7(7): 3077-87, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25607883

RESUMEN

Hybrid materials remain the target for a fruitful range of investigations, especially for energy devices. A number of hybrid electrolyte membranes consisting of inorganic and organic phases were then synthesized. Mechanical, solvent uptake and ionic transport properties were studied with the key point being the characteristic length scale of the interaction between the phases. A group of nanocomposite membranes made of polystyrenesulfonic acid-grafted silica particles embedded in a Poly(Vinylidene Fluoride-co-HexaFluoroPropene) (PVdF-HFP) matrix was studied by combining neutron and X-ray scatterings on the nanometer to angstrom scale. This approach allows for the variation in the morphology and structure as a function of particle loading to be described. These studies showed that the particles aggregate with increasing particle loading and these aggregates swell, creating a physical interaction with the polymer matrix. Particle loadings lower than 30 wt% induce a slight strain between both of the subphases, namely the polymer matrix and the particles. This strain is decreased with particle loading between 20 and 30 wt% conjointly with the beginning of proton conduction. Then the percolation of the aggregates is the beginning of a significant increase of the conduction without any strain. This new insight can give information on the variation in other important intrinsic properties.

3.
Phys Chem Chem Phys ; 16(23): 11228-35, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24777279

RESUMEN

The structure of a commercial sulfonated poly(ether ether ketone) (sPEEK) membrane was analyzed by Small-Angle X-Ray Scattering (SAXS) for different water uptakes obtained after immersion in liquid water at various temperatures. For low membrane swelling, the SAXS profile displays only a wide-angle peak in the 0.2-0.3 Å(-1) region. As the membrane swells, two supplementary correlation peaks arise and shift towards small angles, which are the signature of a structural evolution of the membrane, whereas the wide angle peak remains stable. The SAXS spectra of sPEEK membranes can thus display three correlation peaks simultaneously. Therefore we propose a new interpretation of these SAXS spectra which conclude that the two small angle peaks are attributed to the so-called matrix and ionomer peaks and the wide-angle peak is ascribed to the mean separation distance between sulfonic acid groups grafted onto the polymer backbone. This peak attribution implies that the sPEEK nano-phase separation is triggered by an immersion in hot water (ionomer peak apparition). Our new peak attribution was confirmed by studying the impact of temperature, electron density contrast and ionic exchange capacity.

4.
Phys Chem Chem Phys ; 11(17): 3305-12, 2009 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-19370228

RESUMEN

Poly(phenylene) ionomers which contain merely sulfone units (-SO(2)-) connecting the phenyl rings and in which each phenyl ring is sulfonated (-SO(3)H) have been characterized with respect to their microstructural and transport properties. The high degree of sulfonation leads to the development of a microstructure characterized by very narrow hydrated, hydrophilic domains which are well connected on longer scales. These features together with high absolute water uptakes at given relative humidities and the high charge carrier concentration corresponding to the high ion exchange capacity (IEC approximately 4.5 milli equivalent g(-1)) result in very high proton conductivities but also low water transport coefficients (water diffusion and presumably also electroosmotic drag and permeation). Compared to the transport properties of Nafion, these trends increase with increasing water content and with increasing temperature. For a relative humidity of RH = 30% and a temperature of T = 135 degrees C, the proton conductivity is found to be seven times higher than the conductivity of Nafion under the same conditions. Highly sulfonated poly(p-phenylene sulfone) polymers are water soluble and brittle in the dry state, but their transport properties together with their high hydrolytical and morphological stability renders this type of ionomer an interesting constituent of polymer electrolyte membrane (PEM) fuel cell membranes able to operate at high temperature and low humidification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA