RESUMEN
Creosote is an organic pollutant formed by a complex mixture of highly toxic and carcinogenic compounds and classified as a dense non-aqueous phase liquid (DNAPL). Its migration depends on media and fluid properties that control the multiphase flow in the subsurface. Residual saturation and hydraulic conductivity are essential parameters to accurately simulate fluid displacement in porous media. This work shows the behavior of creosote in porous medium for sandy and clay soils, collected in a contaminated area in the state of São Paulo, Brazil. Creosote retention was evaluated and compared to water. The retention curve parameters were obtained based on van Genuchten and Brooks and Corey models. The hydraulic conductivities of creosote and water are presented for both soils. The results show that, in the clay soil, water was more retained than creosote, while in the sandy soil, creosote retention was higher. The hydraulic conductivity values obtained in the clay soil show a difference of two orders of magnitude between creosote and water. Although creosote is a viscous fluid, it presents considerable mobility in the clay soil, which is relevant in remediation processes. This study advances our knowledge about DNAPL behavior in clay and sand, and no other study of creosote parameters in these porous media was found. A more accurate estimate of the time required for a liquid spill to reach groundwater can then be predicted, so that appropriate actions can be taken and risk management can be carried out.