Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 15(42): 16890-16895, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37847510

RESUMEN

The chiral environment of enantiomerically pure D-alanine solutions is observed to disrupt and modify the entropy-driven assembly of cellulose nanocrystals (CNCs) into a chiral nematic mesophase. The effect is specific to D-alanine and cannot be attributed to the adsorption of alanine molecules (neither D- nor L-alanine) onto the CNC particles.

2.
Nanomaterials (Basel) ; 11(11)2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34835823

RESUMEN

Hybrids comprising cellulose nanocrystals (CNCs) and percolated networks of single-walled carbon nanotubes (SWNTs) may serve for the casting of hybrid materials with improved optical, mechanical, electrical, and thermal properties. However, CNC-dispersed SWNTs are depleted from the chiral nematic (N*) phase and enrich the isotropic phase. Herein, we report that SWNTs dispersed by non-ionic surfactant or triblock copolymers are incorporated within the surfactant-mediated CNC mesophases. Small-angle X-ray measurements indicate that the nanostructure of the hybrid phases is only slightly modified by the presence of the surfactants, and the chiral nature of the N* phase is preserved. Cryo-TEM and Raman spectroscopy show that SWNTs networks with typical mesh size from hundreds of nanometers to microns are distributed equally between the two phases. We suggest that the adsorption of the surfactants or polymers mediates the interfacial interaction between the CNCs and SWNTs, enhancing the formation of co-existing meso-structures in the hybrid phases.

3.
J Phys Chem B ; 123(16): 3535-3542, 2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-30939005

RESUMEN

Incorporation of carbon nanotubes (CNTs) into liquid crystalline phases of cellulose nanocrystals (CNCs) may be used for preparation of hybrids with novel optical, electrical, and mechanical properties. Here, we investigated the effect of nanoparticle diameter, geometry, aspect ratio, and flexibility on the exclusion of dispersed carbon nanostructures (CNs) from the chiral nematic phase (N*) of the CNCs. Although the CNs are nicely dispersed in isotropic suspensions of CNCs, we observe that fullerenes, carbon black, and CNTs are depleted from the N* phase. This observation is surprising as theoretical predictions and previous observations of nanoparticles indicate that nanometric inclusions would be incorporated within the N* phase. Cryogenic transmission electron microscopy imaging reveals that the dispersed CNs induce misorientation of the CNCs, irrespective of their geometry and size. Rheological measurements suggest that about 10% of the CNCs are affected by the CNs. The multiparticle nature of the interaction may be the origin of the nonsize selective exclusion of the CNs. Re-entrant behavior is observed at high CNC concentrations (about 13 wt %), where a (nematic) gel-like phase kinetically traps the CNs. These phases exhibit non-Newtonian flow behavior and birefringence, offering a pathway for preparation of nonisotropic CNCs-CNT composites and thin films via liquid processing.

4.
Soft Matter ; 15(1): 47-54, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30431637

RESUMEN

Dispersion of carbon nanotubes in solutions of polyvinyl-alcohol is required for solution casting of composite materials with improved interfacial adhesion where chains adsorbed on the nanotubes serve in the dual role of dispersant and compatible "connector" to the polyvinyl-alcohol matrix. Yet polyvinyl-alcohol is known to induce coagulation of nanotubes in aqueous solutions and thus far, it has not been used for dispersing pristine nanotubes. Here, we report that non-fully hydrolyzed (80-90%) polyvinyl-alcohol can be used for the preparation of stable, surfactant-free, dispersions of multi-wall carbon nanotubes in ethanol-water mixtures (of at least 50 vol% ethanol). Cryo-TEM imaging and rheological measurements of stable, long-lived dispersions reveal the formation of random networks of suspended tubes, with an averaged mesh size of ∼500 nm, indicating that the individual tubes do not aggregate or coagulate. We hypothesize that the polyvinyl-acetate sequences found in non-fully hydrolyzed polymers swell in the presence of ethanol, leading to the formation of a long-ranged steric (entropic) repulsion among polymer-decorated nanotubes. The unexpected role of the polyvinyl-acetate sequences along with a detailed dispersion mechanism are described.

5.
Trends Biochem Sci ; 42(6): 414-430, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28372857

RESUMEN

Cells require actin nucleation factors to catalyze the formation of actin networks and elongation factors to control the rate and extent of actin polymerization. Earlier models suggested that the different factors assemble actin networks independently. However, recent evidence indicates that the assembly of most cellular networks involves multiple nucleation and elongation factors that work in concert. Here, we describe how these different factors cooperate, directly or indirectly, to promote the assembly of functional actin network in cells, both in the cytoplasm and nucleoplasm. We show that, in many cases, multiple factors collaborate to initiate network assembly and growth. The selection of specific sets of key players enables the cells to fine-tune network structure and dynamics, optimizing them for particular cellular functions.


Asunto(s)
Actinas/metabolismo , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Humanos
6.
Cell Adh Migr ; 10(5): 461-474, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27019160

RESUMEN

Cellular motility is a fundamental process essential for embryonic development, wound healing, immune responses, and tissues development. Cells are mostly moving by crawling on external, or inside, substrates which can differ in their surface composition, geometry, and dimensionality. Cells can adopt different migration phenotypes, e.g., bleb-based and protrusion-based, depending on myosin contractility, surface adhesion, and cell confinement. In the few past decades, research on cell motility has focused on uncovering the major molecular players and their order of events. Despite major progresses, our ability to infer on the collective behavior from the molecular properties remains a major challenge, especially because cell migration integrates numerous chemical and mechanical processes that are coupled via feedbacks that span over large range of time and length scales. For this reason, reconstituted model systems were developed. These systems allow for full control of the molecular constituents and various system parameters, thereby providing insight into their individual roles and functions. In this review we describe the various reconstituted model systems that were developed in the past decades. Because of the multiple steps involved in cell motility and the complexity of the overall process, most of the model systems focus on very specific aspects of the individual steps of cell motility. Here we describe the main advancement in cell motility reconstitution and discuss the main challenges toward the realization of a synthetic motile cell.


Asunto(s)
Células Artificiales/citología , Movimiento Celular , Actinas/metabolismo , Animales , Extensiones de la Superficie Celular/metabolismo , Humanos , Modelos Biológicos , Miosinas/metabolismo
7.
Nat Chem ; 7(11): 897-904, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26492010

RESUMEN

Controlling molecular interactions between bioinspired molecules can enable the development of new materials with higher complexity and innovative properties. Here we report on a dynamic system that emerges from the conformational modification of an elastin-like protein by peptide amphiphiles and with the capacity to access, and be maintained in, non-equilibrium for substantial periods of time. The system enables the formation of a robust membrane that displays controlled assembly and disassembly capabilities, adhesion and sealing to surfaces, self-healing and the capability to undergo morphogenesis into tubular structures with high spatiotemporal control. We use advanced microscopy along with turbidity and spectroscopic measurements to investigate the mechanism of assembly and its relation to the distinctive membrane architecture and the resulting dynamic properties. Using cell-culture experiments with endothelial and adipose-derived stem cells, we demonstrate the potential of this system to generate complex bioactive scaffolds for applications such as tissue engineering.


Asunto(s)
Péptidos/química , Proteínas/química , Células Endoteliales de la Vena Umbilical Humana , Humanos , Microscopía Electrónica de Rastreo , Morfogénesis , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA