Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cardiooncology ; 10(1): 43, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39014463

RESUMEN

AIMS: Cancer therapy-related cardiac dysfunction (CTRCD) is a dreaded complication of anthracycline therapy. CTRCD most frequently appears in patients with cardiovascular risk factors (CVR) or known cardiovascular disease. However, limited data exist on incidence and course of anthracycline-induced CTRCD in patients without preexisting risk factors. We therefore aimed to longitudinally investigate a cohort of young women on anthracycline treatment due to breast cancer without cardiovascular risk factors or known cardiovascular disease (NCT03940625). METHODS AND RESULTS: We enrolled 59 women with primary breast cancer and scheduled anthracycline-based therapy, but without CVR or preexisting cardiovascular disease. We conducted a longitudinal assessment before, immediately and 12 months after cancer therapy with general laboratory, electrocardiograms, echocardiography and cardiovascular magnetic resonance (CMR), including myocardial relaxometry with T1, T2 and extracellular volume mapping. Every single patient experienced a drop in CMR-measured left ventricular ejection fraction (LVEF) of 6 ± 3% immediately after cancer therapy. According to the novel definition 32 patients (54.2%) developed CTRCD after 12 months defined by reduction in LVEF, global longitudinal strain (GLS) and/or biomarkers elevation, two of them were symptomatic. Global myocardial T2 relaxation times as well as myocardial mass increased coincidently with a decline in wall-thickening. While T2 values and myocardial mass normalized after 12 months, LVEF and GLS remained impaired. CONCLUSION: In every single patient anthracyclines induce a decline of myocardial contractility, even among patients without pre-existing risk factors for CTRCD. Our data suggest to thoroughly evaluate whether this may lead to an increased risk of future cardiovascular events.

2.
J Acoust Soc Am ; 143(5): 2965, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29857702

RESUMEN

Wolf notes are generally undesirable sounds that occur in string instruments, particularly in cellos. State-of-the-art passive wolf note eliminators affect the whole cello sound and can become ineffective when environmental conditions and, therefore, the cello's structural properties change. In this paper, an approach is presented that uses smart materials to eliminate the wolf note with little effects to the cello's sound. Based on preliminary measurements, a mathematical model of the cello for generating the wolf note and for developing a wolf note elimination controller is set up. The controller consists of a wolf detection criterion that triggers a velocity feedback controller to actively induce damping into the cello's body whenever a wolf note is detected. The controller setup is experimentally validated by an implementation on a test cello. The velocity feedback to induce the active damping is implemented by means of a piezoelectric patch actuator attached to the cello's body. Both the results of the mathematical model and the results of the experimental investigation show a good performance in eliminating the wolf note on a cello.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA