Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Funct Biomater ; 14(6)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37367274

RESUMEN

An arteriovenous fistula (AVF) is the access most recommended by several authors. However, its manufacture and use can cause several problems in the short, medium and long term. The study of fluid dynamics related to the structure of the AVF can provide information necessary for the reduction of these problems and a better quality of life for patients. The present study analyzed pressure variation in a rigid and flexible (thickness variation) model of AVFs manufactured based on patient data. A computed tomography was performed from which the geometry of the AVF was removed. This was treated and adapted to the pulsatile flow bench. Bench tests with simulation of systolic-diastolic pulse showed higher pressure peaks in the rigid AVF followed by the flexible model with 1 mm thickness. The inflection of the pressure values of the flexible AVF in relation to the rigid one was observed, being more expressive in the flexible AVF of 1 mm. The 1 mm flexible AVF presented an average pressure close to the physiological one and a smaller pressure drop, showing that this AVF model presents the best condition among the three to serve as a basis for the development of an AVF substitute.

2.
J Microencapsul ; 36(4): 410-419, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31269832

RESUMEN

Poly(urea-formaldehyde) (PUF) microcapsules filled with dicyclopentadiene (DCPD) were prepared by in situ polymerisation and the effect of synthesis parameters, such as pH of the solution and agitation rate, on microcapsules size and shell thickness was evaluated. Scanning electron microscopy (SEM) and Fourier transform infra-red spectroscopy (FTIR) were performed. Adjusted pH conditions (pH = 3.5) and agitation rate (1350 RPM) were found using a design of experiments (DOE). SEM results indicated that microcapsule size was directly affected by agitation rate, whereas shell thickness was mostly affected by pH. After obtaining adjusted synthesis conditions, microcapsules presenting mean size of 60 µm and mean shell thickness of 4 µm were embedded in an epoxy matrix for evaluating the self-healing effect. FTIR and SEM analyses in damaged samples suggested that a healing agent was delivered to the crack location.


Asunto(s)
Cápsulas/síntesis química , Formaldehído/síntesis química , Polímeros/síntesis química , Cápsulas/química , Técnicas de Química Sintética , Composición de Medicamentos , Formaldehído/química , Concentración de Iones de Hidrógeno , Indenos/administración & dosificación , Tamaño de la Partícula , Polimerizacion , Polímeros/química
3.
Int J Biomater ; 20102010.
Artículo en Inglés | MEDLINE | ID: mdl-20871841

RESUMEN

Hip fractures often result in serious health implications, particularly in the geriatric population, and have been related to long-term morbidity and death. In most cases, these fractures are caused by impact loads in the area of the greater trochanter, which are produced in a fall. This work is aimed at developing hip protectors using composite materials and evaluating their effectiveness in preventing hip fractures under high impact energy (120 J). The hip protectors were developed with an inner layer of energy absorbing soft material and an outer rigid shell of fiberglass-reinforced polymer composite. According to the experimental results, all tested configurations proved to be effective at reducing the impact load to below the average fracture threshold of proximal femur. Furthermore, an addition of Ethylene Vinyl Acetate (EVA) to the impacted area of the composite shell proved to be beneficial to increase impact strength of the hip protectors. Thus, composite hip protectors proved to be a viable alternative for a mechanically efficient and cost-effective solution to prevent hip fractures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA