Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38732184

RESUMEN

Today, allergies have become a serious problem. PR-10 proteins are clinically relevant allergens that have the ability to bind hydrophobic ligands, which can significantly increase their allergenicity potential. It has been recently shown that not only the birch pollen allergen Bet v 1 but also the alder pollen allergen Aln g 1, might act as a true sensitizer of the immune system. The current investigation is aimed at the further study of the allergenic and structural features of Aln g 1. By using qPCR, we showed that Aln g 1 was able to upregulate alarmins in epithelial cells, playing an important role in sensitization. With the use of CD-spectroscopy and ELISA assays with the sera of allergic patients, we demonstrated that Aln g 1 did not completely restore its structure after thermal denaturation, which led to a decrease in its IgE-binding capacity. Using site-directed mutagenesis, we revealed that the replacement of two residues (Asp27 and Leu30) in the structure of Aln g 1 led to a decrease in its ability to bind to both IgE from sera of allergic patients and lipid ligands. The obtained data open a prospect for the development of hypoallergenic variants of the major alder allergen Aln g 1 for allergen-specific immunotherapy.


Asunto(s)
Alérgenos , Antígenos de Plantas , Inmunoglobulina E , Proteínas de Plantas , Polen , Humanos , Polen/inmunología , Polen/química , Alérgenos/inmunología , Alérgenos/química , Antígenos de Plantas/inmunología , Antígenos de Plantas/química , Inmunoglobulina E/inmunología , Proteínas de Plantas/inmunología , Proteínas de Plantas/química , Alnus/inmunología , Alnus/química
2.
Biomolecules ; 13(12)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38136572

RESUMEN

Lipid transfer proteins (LTPs) realize their functions in plants due to their ability to bind and transport various ligands. Structures of many LTPs have been studied; however, the mechanism of ligand binding and transport is still not fully understood. In this work, we studied the role of Lys61 and Lys81 located near the "top" and "bottom" entrances to the hydrophobic cavity of the lentil lipid transfer protein Lc-LTP2, respectively, in these processes. Using site-directed mutagenesis, we showed that both amino acid residues played a key role in lipid binding to the protein. In experiments with calcein-loaded liposomes, we demonstrated that both the above-mentioned lysine residues participated in the protein interaction with model membranes. According to data obtained from fluorescent spectroscopy and TNS probe displacement, both amino acid residues are necessary for the ability of the protein to transfer lipids between membranes. Thus, we hypothesized that basic amino acid residues located at opposite entrances to the hydrophobic cavity of the lentil Lc-LTP2 played an important role in initial protein-ligand interaction in solution as well as in protein-membrane docking.


Asunto(s)
Lens (Planta) , Lens (Planta)/genética , Ligandos , Lisina , Lípidos
3.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499712

RESUMEN

Gly m 4 is the major soybean allergen, causing birch pollen cross allergic reactions. In some cases, Gly m 4-mediated anaphylaxis takes place, but the causative factors are still unknown. Here, we studied the structural and immunologic properties of Gly m 4 to shed light on this phenomenon. We showed that Gly m 4 retained its structure and IgE-binding capacity after heating. Gly m 4 was cleaved slowly under nonoptimal gastric conditions mimicking duodenal digestion, and IgE from the sera of allergic patients interacted with the intact allergen rather than with its proteolytic fragments. Similar peptide clusters of Bet v 1 and Gly m 4 were formed during allergen endolysosomal degradation in vitro, but their sequence identity was insignificant. Animal polyclonal anti-Gly m 4 and anti-Bet v 1 IgG weakly cross-reacted with Bet v 1 and Gly m 4, respectively. Thus, we supposed that not only conserved epitopes elicited cross-reactivity with Bet v 1, but also variable epitopes were present in the Gly m 4 structure. Our data suggests that consumption of moderately processed soybean-based drinks may lead to the neutralizing of gastric pH as a result of which intact Gly m 4 can reach the human intestine and cause IgE-mediated system allergic reactions.


Asunto(s)
Anafilaxia , Hipersensibilidad a los Alimentos , Animales , Humanos , Glycine max/metabolismo , Inmunoglobulina E , Polen/metabolismo , Alérgenos , Reacciones Cruzadas , Anafilaxia/etiología , Antígenos de Plantas , Proteínas de Plantas
4.
Front Mol Biosci ; 9: 900533, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782860

RESUMEN

Plant pollen is one of the main sources of allergens causing allergic diseases such as allergic rhinitis and asthma. Several allergens in plant pollen are panallergens which are also present in other allergen sources. As a result, sensitized individuals may also experience food allergies. The mechanism of sensitization and development of allergic inflammation is a consequence of the interaction of allergens with a large number of molecular factors that often are acting in a complex with other compounds, for example low-molecular-mass ligands, which contribute to the induction a type 2-driven response of immune system. In this review, special attention is paid not only to properties of allergens but also to an important role of their interaction with lipids and other hydrophobic molecules in pollen sensitization. The reactions of epithelial cells lining the nasal and bronchial mucosa and of other immunocompetent cells will also be considered, in particular the mechanisms of the activation of B and T lymphocytes and the formation of allergen-specific antibody responses.

5.
Membranes (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36676809

RESUMEN

In plants, lipid trafficking within and inside the cell is carried out by lipid-binding and transfer proteins. Ligands for these proteins are building and signaling lipid molecules, secondary metabolites with different biological activities due to which they perform diverse functions in plants. Many different classes of such lipid-binding and transfer proteins have been found, but the most common and represented in plants are lipid transfer proteins (LTPs), pathogenesis-related class 10 (PR-10) proteins, acyl-CoA-binding proteins (ACBPs), and puroindolines (PINs). A low degree of amino acid sequence homology but similar spatial structures containing an internal hydrophobic cavity are common features of these classes of proteins. In this review, we summarize the latest known data on the features of these protein classes with particular focus on their ability to bind and transfer lipid ligands. We analyzed the structural features of these proteins, the diversity of their possible ligands, the key amino acids participating in ligand binding, the currently known mechanisms of ligand binding and transferring, as well as prospects for possible application.

6.
Membranes (Basel) ; 11(12)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34940440

RESUMEN

Plant lipid transfer proteins (LTPs) are known to be clinically significant allergens capable of binding various lipid ligands. Recent data showed that lipid ligands affected the allergenic properties of plant LTPs. In this work, we checked the assumption that specific amino acid residues in the Len c 3 structure can play a key role both in the interaction with lipid ligands and IgE-binding capacity of the allergen. The recombinant analogues of Len c 3 with the single or double substitutions of Thr41, Arg45 and/or Tyr80 were obtained by site-directed mutagenesis. All these amino acid residues are located near the "bottom" entrance to the hydrophobic cavity of Len c 3 and are likely included in the IgE-binding epitope of the allergen. Using a bioinformatic approach, circular dichroism and fluorescence spectroscopies, ELISA, and experiments mimicking the allergen Len c 3 gastroduodenal digestion we showed that the substitution of all the three amino acid residues significantly affected structural organization of this region and led both to a change of the ligand-binding capacity and the allergenic potential of Len c 3.

7.
Membranes (Basel) ; 11(10)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34677520

RESUMEN

Previously, we have demonstrated that Gly m 4, one of the major soybean allergens, could pass through the Caco-2 epithelial barrier and have proposed a mechanism of sensitization. However, it is not known yet whether Gly m 4 can reach the intestine in its intact form after digestion in stomach. In the present work, we studied an influence of various factors including lipids (fatty acids and lysolipids) on digestibility of Gly m 4. Using fluorescent and CD spectroscopies, we showed that Gly m 4 interacted with oleic acid and LPPG (lyso-palmitoyl phosphatidylglycerol), but its binding affinity greatly decreased under acidic conditions, probably due to the protein denaturation. The mimicking of gastric digestion revealed that Gly m 4 digestibility could be significantly reduced with the change of pH value and pepsin-to-allergen ratio, as well as by the presence of LPPG. We suggested that the protective effect of LPPG was unlikely associated with the allergen binding, but rather connected to the pepsin inhibition due to the lipid interaction with its catalytic site. As a result, we assumed that, under certain conditions, the intact Gly m 4 might be able to reach the human intestine and thereby could be responsible for allergic sensitization.

8.
Membranes (Basel) ; 11(10)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34677528

RESUMEN

Lipid transfer proteins (LTPs) participate in many important physiological processes in plants, including adaptation to stressors, e.g., salinity. Here we address the mechanism of this protective action of LTPs by studying the interaction between LTPs and abscisic acid (ABA, a "stress" hormone) and their mutual participation in suberin deposition in root endodermis of salt-stressed pea plants. Using immunohistochemistry we show for the first time NaCl induced accumulation of LTPs and ABA in the cell walls of phloem paralleled by suberin deposition in the endoderm region of pea roots. Unlike LTPs which were found localized around phloem cells, ABA was also present within phloem cells. In addition, ABA treatment resulted in both LTP and ABA accumulation in phloem cells and promoted root suberization. These results suggested the importance of NaCl-induced accumulation of ABA in increasing the abundance of LTPs and of suberin. Using molecular modeling and fluorescence spectroscopy we confirmed the ability of different plant LTPs, including pea Ps-LTP1, to bind ABA. We therefore hypothesize an involvement of plant LTPs in ABA transport (unloading from phloem) as part of the salinity adaptation mechanism.

9.
Nutrients ; 13(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208504

RESUMEN

The soybean allergen Gly m 4 is known to cause severe allergic reactions including anaphylaxis, unlike other Bet v 1 homologues, which induce mainly local allergic reactions. In the present study, we aimed to investigate whether the food Bet v 1 homologue Gly m 4 can be a sensitizer of the immune system. Susceptibility to gastrointestinal digestion was assessed in vitro. Transport through intestinal epithelium was estimated using the Caco-2 monolayer. Cytokine response of different immunocompetent cells was evaluated by using Caco-2/Immune cells co-culture model. Absolute levels of 48 cytokines were measured by multiplex xMAP technology. It was shown that Gly m 4 can cross the epithelial barrier with a moderate rate and then induce production of IL-4 by mature dendritic cells in vitro. Although Gly m 4 was shown to be susceptible to gastrointestinal enzymes, some of its proteolytic fragments can selectively cross the epithelial barrier and induce production of Th2-polarizing IL-5, IL-10, and IL-13, which may point at the presence of the T-cell epitope among the crossed fragments. Our current data indicate that Gly m 4 can potentially be a sensitizer of the immune system, and intercommunication between immunocompetent and epithelial cells may play a key role in the sensitization process.


Asunto(s)
Antígenos de Plantas/farmacología , Hipersensibilidad a los Alimentos/terapia , Inmunización/métodos , Antígenos de Plantas/inmunología , Células CACO-2/efectos de los fármacos , Células CACO-2/inmunología , Quimiocinas/metabolismo , Técnicas de Cocultivo , Citocinas/metabolismo , Escherichia coli/metabolismo , Hipersensibilidad a los Alimentos/inmunología , Cromatografía de Gases y Espectrometría de Masas , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Modelos Biológicos , Organismos Modificados Genéticamente , Células THP-1/efectos de los fármacos , Células THP-1/inmunología
10.
Biomolecules ; 10(12)2020 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322094

RESUMEN

Previously, we isolated the lentil allergen Len c 3, belonging to the class of lipid transfer proteins, cross-reacting with the major peach allergen Pru p 3 and binding lipid ligands. In this work, the allergenic capacity of Len c 3 and effects of different lipid ligands on the protein stability and IgE-binding capacity were investigated. Impacts of pH and heat treating on ligand binding with Len c 3 were also studied. It was shown that the recombinant Len c 3 (rLen c 3) IgE-binding capacity is sensitive to heating and simulating of gastroduodenal digestion. While being heated or digested, the protein showed a considerably lower capacity to bind specific IgE in sera of allergic patients. The presence of lipid ligands increased the thermostability and resistance of rLen c 3 to digestion, but the level of these effects was dependent upon the ligand's nature. The anionic lysolipid LPPG showed the most pronounced protective effect which correlated well with experimental data on ligand binding. Thus, the Len c 3 stability and allergenic capacity can be retained in the conditions of food heat cooking and gastroduodenal digestion due to the presence of certain lipid ligands.


Asunto(s)
Alérgenos/metabolismo , Inmunoglobulina E/metabolismo , Lens (Planta)/química , Lípidos/química , Alérgenos/química , Secuencia de Aminoácidos , Digestión , Tracto Gastrointestinal/fisiología , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Péptidos/química , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Temperatura
11.
Biochemistry ; 56(12): 1785-1796, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28266846

RESUMEN

The lentil lipid transfer protein, designated as Lc-LTP2, was isolated from Lens culinaris seeds. The protein belongs to the LTP1 subfamily and consists of 93 amino acid residues. Its spatial structure includes four α-helices (H1-H4) and a long C-terminal tail. Here, we report the ligand binding properties of Lc-LTP2. The fluorescent 2-p-toluidinonaphthalene-6-sulfonate binding assay revealed that the affinity of Lc-LTP2 for saturated and unsaturated fatty acids was enhanced with a decrease in acyl-chain length. Measurements of boundary potential in planar lipid bilayers and calcein dye leakage in vesicular systems revealed preferential interaction of Lc-LTP2 with the negatively charged membranes. Lc-LTP2 more efficiently transferred anionic dimyristoylphosphatidylglycerol (DMPG) than zwitterionic dimyristoylphosphatidylcholine. Nuclear magnetic resonance experiments confirmed the higher affinity of Lc-LTP2 for anionic lipids and those with smaller volumes of hydrophobic chains. The acyl chains of the bound lysopalmitoylphosphatidylglycerol (LPPG), DMPG, or dihexanoylphosphatidylcholine molecules occupied the internal hydrophobic cavity, while their headgroups protruded into the aqueous environment between helices H1 and H3. The spatial structure and backbone dynamics of the Lc-LTP2-LPPG complex were determined. The internal cavity was expanded from ∼600 to ∼1000 Å3 upon the ligand binding. Another entrance into the internal cavity, restricted by the H2-H3 interhelical loop and C-terminal tail, appeared to be responsible for the attachment of Lc-LTP2 to the membrane or micelle surface and probably played an important role in the lipid uptake determining the ligand specificity. Our results confirmed the previous assumption regarding the membrane-mediated antimicrobial action of Lc-LTP2 and afforded molecular insight into its biological role in the plant.


Asunto(s)
Proteínas Portadoras/química , Ácidos Grasos Insaturados/química , Ácidos Grasos/química , Lens (Planta)/química , Membrana Dobles de Lípidos/química , Proteínas Portadoras/aislamiento & purificación , Proteínas Portadoras/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Fluoresceínas/química , Colorantes Fluorescentes/química , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Membrana Dobles de Lípidos/metabolismo , Lisofosfolípidos/química , Lisofosfolípidos/metabolismo , Modelos Moleculares , Naftalenosulfonatos/química , Fosfatidilgliceroles/química , Fosfatidilgliceroles/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios Proteicos , Semillas/química , Electricidad Estática
12.
Curr Med Chem ; 24(17): 1772-1787, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27784212

RESUMEN

Pathogenesis-related (PR) proteins are components of innate immunity system in plants. They play an important role in plant defense against pathogens. Lipid transfer proteins (LTPs) and Bet v 1 homologs comprise of two separate families of PR-proteins. Both LTPs (PR-14) and Bet v 1 homologs (PR-10) are multifunctional small proteins involving in plant response to abiotic and biotic stress conditions. The representatives of these PR-protein families do not show any sequence similarity but have other common biochemical features such as low molecular masses, the presence of hydrophobic cavities, ligand binding properties, and antimicrobial activities. Besides, many members of PR-10 and PR-14 families are ubiquitous plant panallergens which are able to cause sensitization of human immune system and crossreactive allergic reactions to plant food and pollen. This review is aimed at comparative analysis of structure-functional and allergenic properties of the PR-10 and PR-14 families, as well as prospects for their medicinal application.


Asunto(s)
Alérgenos/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Alérgenos/química , Alérgenos/inmunología , Antiinfecciosos/inmunología , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Proteínas Portadoras/química , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Crioprotectores/química , Hongos/efectos de los fármacos , Humanos , Inmunidad Innata , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Simbiosis
13.
BMC Plant Biol ; 16: 107, 2016 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-27137920

RESUMEN

BACKGROUND: Plant lipid transfer proteins (LTPs) assemble a family of small (7-9 kDa) ubiquitous cationic proteins with an ability to bind and transport lipids as well as participate in various physiological processes including defense against phytopathogens. They also form one of the most clinically relevant classes of plant allergens. Nothing is known to date about correlation between lipid-binding and IgE-binding properties of LTPs. The garden pea Pisum sativum is widely consumed crop and important allergenic specie of the legume family. This work is aimed at isolation of a novel LTP from pea seeds and characterization of its structural, functional, and allergenic properties. RESULTS: Three novel lipid transfer proteins, designated as Ps-LTP1-3, were found in the garden pea Pisum sativum, their cDNA sequences were determined, and mRNA expression levels of all the three proteins were measured at different pea organs. Ps-LTP1 was isolated for the first time from the pea seeds, and its complete amino acid sequence was determined. The protein exhibits antifungal activity and is a membrane-active compound that causes a leakage from artificial liposomes. The protein binds various lipids including bioactive jasmonic acid. Spatial structure of the recombinant uniformly (13)C,(15)N-labelled Ps-LTP1 was solved by heteronuclear NMR spectroscopy. In solution the unliganded protein represents the mixture of two conformers (relative populations ~ 85:15) which are interconnected by exchange process with characteristic time ~ 100 ms. Hydrophobic residues of major conformer form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ~1000 Å(3)). The minor conformer probably corresponds to the protein with the partially collapsed internal cavity. CONCLUSIONS: For the first time conformational heterogeneity in solution was shown for an unliganded plant lipid transfer protein. Heat denaturation profile and simulated gastrointestinal digestion assay showed that Ps-LTP1 displayed a high thermal and digestive proteolytic resistance proper for food allergens. The reported structural and immunological findings seem to describe Ps-LTP1 as potential cross-reactive allergen in LTP-sensitized patients, mostly Pru p 3(+) ones. Similarly to allergenic LTPs the potential IgE-binding epitope of Ps-LTP1 is located near the proposed entrance into internal cavity and could be involved in lipid-binding.


Asunto(s)
Antígenos de Plantas/metabolismo , Proteínas Portadoras/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacología , Antígenos de Plantas/genética , Antígenos de Plantas/farmacología , Proteínas Portadoras/genética , Proteínas Portadoras/farmacología , Clonación Molecular , Ciclopentanos/metabolismo , ADN Complementario/genética , Hongos/efectos de los fármacos , Hongos/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lípidos/química , Espectroscopía de Resonancia Magnética , Oxilipinas/metabolismo , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/farmacología , Unión Proteica , Conformación Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética , Semillas/metabolismo , Análisis de Secuencia de ADN , Soluciones/química
14.
J Pept Sci ; 22(1): 59-66, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26680443

RESUMEN

A novel lipid transfer protein, designated as Ag-LTP, was isolated from aerial parts of the dill Anethum graveolens L. Structural, antimicrobial, and lipid binding properties of the protein were studied. Complete amino acid sequence of Ag-LTP was determined. The protein has molecular mass of 9524.4 Da, consists of 93 amino acid residues including eight cysteines forming four disulfide bonds. The recombinant Ag-LTP was overexpressed in Escherichia coli and purified. NMR investigation shows that the Ag-LTP spatial structure contains four α-helices, forming the internal hydrophobic cavity, and a long C-terminal tail. The measured volume of the Ag-LTP hydrophobic cavity is equal to ~800 A(3), which is much larger than those of other plant LTP1s. Ag-LTP has weak antifungal activity and unpronounced lipid binding specificity but effectively binds plant hormone jasmonic acid. Our results afford further molecular insight into biological functions of LTP in plants.


Asunto(s)
Anethum graveolens/química , Proteínas Portadoras/química , Proteínas de Plantas/química , Secuencia de Aminoácidos , Anethum graveolens/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Ciclopentanos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Oxilipinas/química , Componentes Aéreos de las Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
15.
Biochem Biophys Res Commun ; 439(4): 427-32, 2013 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-23998937

RESUMEN

Lipid transfer protein, designated as Lc-LTP2, was isolated from seeds of the lentil Lens culinaris. The protein has molecular mass 9282.7Da, consists of 93 amino acid residues including 8 cysteines forming 4 disulfide bonds. Lc-LTP2 and its stable isotope labeled analogues were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant protein was examined, and its spatial structure was studied by NMR spectroscopy. The polypeptide chain of Lc-LTP2 forms four α-helices (Cys4-Leu18, Pro26-Ala37, Thr42-Ala56, Thr64-Lys73) and a long C-terminal tail without regular secondary structure. Side chains of the hydrophobic residues form a relatively large internal tunnel-like lipid-binding cavity (van der Waals volume comes up to ∼600Å(3)). The side-chains of Arg45, Pro79, and Tyr80 are located near an assumed mouth of the cavity. Titration with dimyristoyl phosphatidylglycerol (DMPG) revealed formation of the Lc-LTP2/lipid non-covalent complex accompanied by rearrangements in the protein spatial structure and expansion of the internal cavity. The resultant Lc-LTP2/DMPG complex demonstrates limited lifetime and dissociates within tens of hours.


Asunto(s)
Antígenos de Plantas/biosíntesis , Antígenos de Plantas/genética , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Lens (Planta)/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Antígenos de Plantas/química , Proteínas Portadoras/química , Cristalografía por Rayos X , Lens (Planta)/genética , Modelos Moleculares , Peso Molecular , Proteínas de Plantas/química , Conformación Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA