Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 35: 127-136, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27039211

RESUMEN

Passiflora alata Curtis (P. alata) leaves have anti-inflammatory properties; the present study aimed to investigate the anti-diabetogenic properties of P. alata aqueous leaf extract. HPLC analysis identified the phenolic compounds catechin, epicatechin and rutin. The aqueous extract was administered for 30weeks to non-obese diabetic (NOD) mice presenting a decrease of 28.6% in diabetes incidence and the number of inflammatory cells in pancreatic islets, when compared with the control group (water). The P. alata group presented an antioxidant effect and decreased lipid peroxidation in the serum of NOD mice. Increased numbers of insulin-positive cells were also observed in the pancreatic islets of the treated group. The diabetic group exhibited higher levels in the glucose tolerance test and glycemic index, in comparison to the P. alata-treated group and non-diabetic control BALB/c mice. In addition, the P. alata extract reduced the percentage and the proliferation index of NOD mice lymphocytes submitted to in vitro dose/response mitogenic stimulation assays. These results suggest that the aqueous extract of P. alata has anti-inflammatory properties, contributing to the protection of beta cells in pancreatic islets in NOD mice, and presents potential for use a supporting approach to treat type 1 diabetes.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Células Secretoras de Insulina/efectos de los fármacos , Passiflora/inmunología , Extractos Vegetales/uso terapéutico , Animales , Células Cultivadas , Citoprotección , Femenino , Humanos , Insulina/sangre , Células Secretoras de Insulina/fisiología , Peroxidación de Lípido/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Hojas de la Planta
2.
Springerplus ; 4: 537, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26413443

RESUMEN

BACKGROUND: Passion fruit woodiness may be caused by Cowpea aphid-borne mosaic virus (CABMV) and is currently the major passion fruit disease in Brazil. To assess the virus-vector-host interactions, a newly introduced golden passion fruit plantation located in eastern region of São Paulo State, Brazil, was monitored. METHODS: Dissemination of CABMV was determined analyzing golden passion fruit plants monthly for 18 months by PTA-ELISA. Seasonality and aphid fauna diversity was determined by identification of the captured species using yellow sticky, yellow water-pan and green tile traps. Population composition of the aphid species was determined using the descriptive index of occurrence, dominance and general classification and overlap of species in the R program. RESULTS: Analyses of species grouping afforded to recognize 14 aphid species. The genus Aphis represented 55.42 % of the species captured. Aphid species formed two distinct clusters, one of which was characterized by the diversity of polyphagous species that presented high potential to spread CABMV. CONCLUSION: The low abundance and diversity of aphid species did not interfere negatively in the CABMV epidemiology. The genus Aphis, particularly Aphis fabae/solanella and A. gossypii, was crucial in the spread of CABMV in passion fruit orchards in the eastern State of São Paulo.

3.
Antioxidants (Basel) ; 4(4): 662-80, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26783951

RESUMEN

Medical and folklore reports suggest that Eugenia uniflora (E. uniflora) is a functional food that contains numerous compounds in its composition, with anti-inflammatory, antioxidant and anti-diabetic effects. In the present study, we investigated the best solvents (water, ethanol and methanol/acetone) for extracting bioactive compounds of E. uniflora leaves, assessing total phenols and the antioxidant activity of the extracts by 2,2-Diphenyl-1-picrylhydrazyl (DPPH), Ferric Reducing Antioxidant Power (FRAP), 2,2'-Azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and Oxygen Radical Absorbance Capacity (ORAC) assays, identifying hydrolysable tannins and three phenolic compounds (ellagic acid, gallic acid and rutin) present in the leaves. In addition, we evaluated the incidence of diabetes, degree of insulitis, serum insulin, hepatic glutathione and tolerance test glucose in non-obese diabetic (NOD) mice. Our results suggest that the aqueous extract presents antioxidant activity and high total phenols, which were used as a type 1 diabetes mellitus (DM-1) treatment in NOD mice. We verified that the chronic consumption of aqueous extract reduces the inflammatory infiltrate index in pancreatic islets, maintaining serum insulin levels and hepatic glutathione, and reducing serum lipid peroxidation as well as the risk for diabetes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA