Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 45(3): 962-5, 2001 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11181392

RESUMEN

To investigate amoxicillin and metronidazole resistance of Helicobacter pylori, we compared putative resistance genes between resistant strains obtained in vitro and their sensitive parent strain. All metronidazole-resistant strains had rdxA mutations, and an amoxicillin-resistant strain had pbp1 and pbp2 mutations. By transforming PCR products of these mutated genes into antibiotic-sensitive strains, we showed that rdxA null mutations were sufficient for metronidazole resistance, while pbp1 mutations contributed to amoxicillin resistance of H. pylori.


Asunto(s)
Amoxicilina/farmacología , Proteínas Bacterianas/genética , Proteínas Portadoras , Helicobacter pylori/genética , Hexosiltransferasas/genética , Proteínas de la Membrana/genética , Metronidazol/farmacología , Complejos Multienzimáticos/genética , Muramoilpentapéptido Carboxipeptidasa , Peptidil Transferasas/genética , Secuencia de Aminoácidos , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Helicobacter pylori/efectos de los fármacos , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas de Unión a las Penicilinas , Homología de Secuencia de Aminoácido
4.
Aliment Pharmacol Ther ; 14(11): 1383-401, 2000 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11069309

RESUMEN

This review focuses on the gastric acid pump as a therapeutic target for the control of acid secretion in peptic ulcer and gastro-oesophageal reflux disease. The mechanism of the proton pump inhibitors is discussed as well as their clinical use. The biology of Helicobacter pylori as a gastric denizen is then discussed, with special regard to its mechanisms of acid resistance. Here the properties of the products of the urease gene clusters, ureA, B and ureI, E, F, G and H are explored in order to explain the unique location of this pathogen. The dominant requirement for acid resistance is the presence of a proton gated urea transporter, UreI, which increases access of gastric juice urea to the intrabacterial urease 300-fold. This enables rapid and continuous buffering of the bacterial periplasm to approximately pH 6.0, allowing acid resistance and growth at acidic pH in the presence of 1 mM urea. A hypothesis for the basis of combination therapy for eradication is also presented.


Asunto(s)
Ácido Gástrico/metabolismo , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Úlcera Péptica/tratamiento farmacológico , Inhibidores de la Bomba de Protones , Ureasa/genética , ATPasa Intercambiadora de Hidrógeno-Potásio/efectos de los fármacos , ATPasa Intercambiadora de Hidrógeno-Potásio/fisiología , Humanos , Concentración de Iones de Hidrógeno , Úlcera Péptica/microbiología , Ureasa/fisiología
5.
J Clin Invest ; 106(3): 339-47, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10930437

RESUMEN

Helicobacter pylori resists gastric acidity by modulating the proton-gated urea channel UreI, allowing for pH(out)-dependent regulation of urea access to intrabacterial urease. We employed pH- and Ca(2+)-sensitive fluorescent dyes and confocal microscopy to determine the location, rate, and magnitude of pH changes in an H. pylori-AGS cell coculture model, comparing wild-type bacteria with nonpolar ureI-deletion strains (ureI-ve). Addition of urea at pH 5.5 to the coculture resulted first in elevation of bacterial periplasmic pH, followed by an increase of medium pH and then pH in AGS cells. No change in periplasmic pH occurred in ureI-deletion mutants, which also induced a slower increase in the pH of the medium. Pretreatment of the mutant bacteria with the detergent C(12)E(8) before adding urea resulted in rapid elevation of bacterial cytoplasmic pH and medium pH. UreI-dependent NH(3) generation by intrabacterial urease buffers the bacterial periplasm, enabling acid resistance at the low urea concentrations found in gastric juice. Perfusion of AGS cells with urea-containing medium from coculture at pH 5.5 did not elevate pH(in) or [Ca(2+)](in), unless the conditioned medium was first neutralized to elevate the NH(3)/NH(4)(+) ratio. Therefore, cellular effects of intrabacterial ammonia generation under acidic conditions are indirect and not through a type IV secretory complex. The pH(in) and [Ca(2+)](in) elevation that causes the NH(3)/NH(4)(+) ratio to increase after neutralization of infected gastric juice may contribute to the gastritis seen with H. pylori infection.


Asunto(s)
Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiología , Helicobacter pylori/enzimología , Proteínas de Transporte de Membrana , Ureasa/metabolismo , Amoníaco/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Técnicas de Cocultivo , Eliminación de Gen , Genes Bacterianos , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Humanos , Concentración de Iones de Hidrógeno , Mutación , Células Tumorales Cultivadas , Ureasa/genética
7.
Mol Microbiol ; 36(1): 141-52, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10760171

RESUMEN

ureI encodes an inner membrane protein of Helicobacter pylori. The role of the bacterial inner membrane and UreI in acid protection and regulation of cytoplasmic urease activity in the gastric microorganism was studied. The irreversible inhibition of urease when the organism was exposed to a protonophore (3,3',4', 5-tetrachlorsalicylanide; TCS) at acidic pH showed that the inner membrane protected urease from acid. Isogenic ureI knockout mutants of several H. pylori strains were constructed by replacing the ureI gene of the urease gene cluster with a promoterless kanamycin resistance marker gene (kanR). Mutants carrying the modified ureAB-kanR-EFGH operon all showed wild-type levels of urease activity at neutral pH in vitro. The mutants resisted media of pH > 4.0 but not of pH < 4.0. Whereas wild-type bacteria showed high levels of urease activity below pH 4.0, this ability was not retained in the ureI mutants, resulting in inhibition of metabolism and cell death. Gene complementation experiments with plasmid-derived H. pylori ureI restored wild-type properties. The activation of urease activity found in structurally intact but permeabilized bacteria treated with 0.01% detergent (polyoxy-ethylene-8-laurylether; C12E8), suggested a membrane-limited access of urea to internal urease at neutral pH. Measurement of 14C-urea uptake into Xenopus oocytes injected with ureI cRNA showed acid activation of uptake only in injected oocytes. Acceleration of urea uptake by UreI therefore mediates the increase of intracellular urease activity seen under acidic conditions. This increase of urea permeability is essential for H. pylori survival in environments below pH 4.0. ureI-independent urease activity may be sufficient for maintenance of bacterial viability above pH 4.0.


Asunto(s)
Ácidos/farmacología , Proteínas Bacterianas/metabolismo , Helicobacter pylori/efectos de los fármacos , Proteínas de Transporte de Membrana , Urea/metabolismo , Ureasa/metabolismo , Animales , Proteínas Bacterianas/genética , Transporte Biológico , Medios de Cultivo , Farmacorresistencia Microbiana , Helicobacter pylori/enzimología , Helicobacter pylori/genética , Concentración de Iones de Hidrógeno , Ionóforos/farmacología , Familia de Multigenes , Fuerza Protón-Motriz , Protones , Proteínas Recombinantes/metabolismo , Salicilanilidas/farmacología , Ureasa/genética , Xenopus
8.
Infect Immun ; 68(2): 470-7, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10639406

RESUMEN

ureI encodes an integral cytoplasmic membrane protein. It is present in the urease gene cluster of Helicobacter pylori and is essential for infection and acid survival, but its role is unknown. To determine the function of UreI protein, we produced H. pylori ureI deletion mutants and measured the pH dependence of urease activity of intact and lysed bacteria and the effect of urea on the membrane potential. We also determined ureI expression, urease activity, and the effect of urea on membrane potential of several gastric and nongastric Helicobacter species. ureI was found to be present in the genome of the gastric Helicobacter species and absent in the nongastric Helicobacter species studied, as determined by PCR. Likewise, Western blot analysis confirmed that UreI was expressed only in the gastric Helicobacter species. When UreI is present, acidic medium pH activation of cytoplasmic urease is found, and urea addition increases membrane potential at acidic pH. The addition of a low concentration of detergent raised urease activity of intact bacteria at neutral pH to that of their homogenates, showing that urease activity was membrane limited. No acidic pH activation or urea induced membrane potential changes were found in the nongastric Helicobacter species. The ureI gene product is probably a pH activated urea transporter or perhaps regulates such a transporter as a function of periplasmic pH.


Asunto(s)
Proteínas Bacterianas/genética , Citoplasma/enzimología , Genes Bacterianos/fisiología , Helicobacter pylori/genética , Proteínas de Transporte de Membrana , Ureasa/metabolismo , Western Blotting , Detergentes/farmacología , Activación Enzimática , Helicobacter pylori/enzimología , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Urea/farmacología
9.
Res Microbiol ; 150(8): 507-20, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10577484

RESUMEN

The only experimental data available on the membrane topology of transition metal ATPases are from in vitro studies on two distinct P-type ATPases (CadA and CopA) of a gastric bacterium, Helicobacter pylori, both postulated to contain eight transmembrane domains (H1 to H8). In this study, H. pylori CadA ATPase was subjected to analysis of membrane topology in vivo by expression of ATPase-alkaline phosphatase (AP) hybrid proteins in Escherichia coli using a novel vector, pBADphoA. This vector contains an inducible arabinose promoter and unique restriction sites for fusion of DNA fragments to phoA. The phoA gene lacking sequences encoding its N-terminal signal peptide was linked to the C-terminal regions of the postulated five cytoplasmic and four periplasmic segments of the H. pylori pump. The results obtained by heterologous expression of ATPase-AP hybrid proteins showed consistence with a model of eight transmembrane domains. They also demonstrated that the H. pylori ATPase sequences are well assembled in the cytoplasmic membrane of E. coli, a neutralophilic bacterium. Cloning and amino acid sequence analysis of the homologous ATPase of Helicobacter felis further verified the topological model for the H. pylori pump analyzed here, although the degree of amino acid sequence identity varied between the corresponding transmembrane segments, from 25% for H1 up to 100% for H6. It was found that the topology of ATPase follows the 'positive inside rule'. With respect to the bioenergetic capacities of H. pylori, we discuss here the membrane potential as a possible factor directing insertion of ATPases in the cytoplasmic membrane of gastric bacteria.


Asunto(s)
Adenosina Trifosfatasas/fisiología , Quinasas Ciclina-Dependientes/genética , Helicobacter pylori/fisiología , Proteínas Recombinantes de Fusión/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Fosfatasa Alcalina , Secuencia de Aminoácidos , Transporte Biológico Activo , Membrana Celular/fisiología , Proteínas de Escherichia coli , Helicobacter pylori/genética , Humanos , Datos de Secuencia Molecular , Conformación Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Alineación de Secuencia
10.
Mol Microbiol ; 33(3): 524-36, 1999 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10417643

RESUMEN

Inactivation of Helicobacter pylori cadA, encoding a putative transition metal ATPase, was only possible in one of four natural competent H. pylori strains, designated 69A. All tested cadA mutants showed increased growth sensitivity to Cd(II) and Zn(II). In addition, some of them showed both reduced 63Ni accumulation during growth and no or impaired urease activity, which was not due to lack of urease enzyme subunits. Gene complementation experiments with plasmid (pY178)-derived H. pylori cadA failed to correct the deficiencies, whereas resistance to Cd(II) and Zn(II) was restored. Moreover, pY178 conferred increased Co(II) resistance to both the cadA mutants and the wild-type strain 69A. Heterologous expression of H. pylori cadA in an Escherichia coli zntA mutant resulted in an elevated resistance to Cd(II) and Zn(II). Expression of cadA in E. coli SE5000 harbouring H. pylori nixA, which encodes a divalent cation importer along with the H. pylori urease gene cluster, led to about a threefold increase in urease activity compared with E. coli control cells lacking the H. pylori cadA gene. These results suggest that H. pylori CadA is an essential resistance pump with ion specificity towards Cd(II), Zn(II) and Co(II). They also point to a possible role of H. pylori CadA in high-level activity of H. pylori urease, an enzyme sensitive to a variety of metal ions.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Helicobacter pylori/enzimología , Metaloproteínas/metabolismo , Ureasa/metabolismo , Adenosina Trifosfatasas/genética , Proteínas Bacterianas/genética , Transporte Biológico , Western Blotting , Cadmio/química , Cobalto/química , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Helicobacter pylori/genética , Mutación , Plásmidos/genética , Ureasa/genética , Zinc/química
11.
Gut ; 43 Suppl 1: S56-60, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9764042

RESUMEN

The ability of Helicobacter pylori to survive in the varying acidity of the stomach is considered to be linked to its ability to maintain a tolerable pH in its periplasmic space by acid dependent activation of internal urease activity. Whereas survival of H pylori can occur between a periplasmic pH of 4.0 to 8.0, growth can only occur between a periplasmic pH of 6.0 to 8.0. When urease activity is only able to elevate periplasmic pH to between 4.0 and 6.0, the organisms will survive but not divide. In the absence of division, antibiotics such as clarithromycin and amoxycillin are ineffective. Proton pump inhibitors, by elevating gastric pH, would increase the population of dividing organisms and hence synergise with these antibiotics.


Asunto(s)
Helicobacter pylori/fisiología , Adenosina Trifosfato/biosíntesis , Antibacterianos , Quimioterapia Combinada/uso terapéutico , Gastritis/microbiología , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/metabolismo , Antagonistas de los Receptores H2 de la Histamina/uso terapéutico , Humanos , Concentración de Iones de Hidrógeno , Inhibidores de la Bomba de Protones , Ranitidina/uso terapéutico , Estómago/microbiología , Ureasa/metabolismo
12.
Acta Physiol Scand Suppl ; 643: 123-35, 1998 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9789554

RESUMEN

Three distinct P type pumps were cloned from H. pylori 69A. Two of these pumps, ATPase 439 and ATPase 948 (CopA), were isolated by gene library screening using DNA oligonucleotide primers. Amino acid similarities found for the predicted proteins were about 50% to Cd2+/Cu2+ pumps. Gene disruption mutagenesis rendered the H. pylori knockout mutants more sensitive to Zn2+ and Cd2+ (ATPase 439) or Cu2+ (CopA). Some of the ATPase 439-deficient mutants were negative for urease activity while the majority of the mutants remained positive. Functional diversity of the pumps was also reflected by the ion affinities found for N-terminal peptides of CopA to Cu2+ and of ATPase 439 to Ni2+, Cu2+ and CO2+. The membrane domain of the two pumps were experimentally shown to consist of eight membrane spans. When ATPase 439 was expressed under control of a tac promoter in Escherichia coli, vanadate-sensitive phosphate accumulation was observed cytochemically along the membrane of the host cells. The third P type pump (ATPase 115) which also exhibited homology to transition metal ATPase was identified by sequencing a library of H. pylori membrane genes. The hydropathy plot of this pump was very similar to the former H. pylori ATPases whereas the N-terminal ion binding region was distinct. It was concluded that, in H. pylori, the presence of three transition metal ATPases with distinct ion specificity contributes to the adaptive mechanisms for gastric survival.


Asunto(s)
Clonación Molecular , Helicobacter pylori/metabolismo , Bombas Iónicas/genética , Bombas Iónicas/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Alelos , Secuencia de Aminoácidos/genética , Escherichia coli/enzimología , Bombas Iónicas/química , Datos de Secuencia Molecular , Mutagénesis , Conformación Proteica
13.
Gastroenterology ; 115(3): 628-41, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9721160

RESUMEN

BACKGROUND & AIMS: The metabolic and urease responses of Helicobacter pylori to variations in gastric acidity are unknown. The aim of this study was to determine effects of changes of environmental pH on metabolism, urease activity, and survival of H. pylori in an unbuffered environment. METHODS: Bacterial metabolism and urease activity were determined by measuring pH changes in perfused microphysiometer chambers over a pH range from 2.5 to 9.0 with or without urea and survival by restoration of metabolism at pH 7.4. RESULTS: Glucose metabolism by acid-adapted H. pylori occurred at a perfusion pH between 3.5 and 8.6 and was highest between 7.4 and 8.2. Metabolism was irreversibly inhibited at pH <3.5 or >8.6. In the presence of 2.5 mmol/L urea, the chamber pH increased to about 6.2 during perfusion between pH 5.5 and 4.0. At pH 4.0 and below, urease activity increased several-fold without change of chamber pH. Urea in the perfusate enabled retention of metabolism after acid exposure but was toxic at pH 7.4. CONCLUSIONS: The metabolic range of acid-adapted H. pylori is between an environmental pH of 3.5 and 8.6. Extracellular pH-regulated internal urease activity allows metabolism in the pH range between 4.0 and 2. 5 by maintaining periplasmic pH at 6.2. The organism is an acid-tolerant neutralophile due to internal urease activity.


Asunto(s)
Helicobacter pylori/metabolismo , Concentración de Iones de Hidrógeno , Ureasa/metabolismo , Cloruro de Amonio/farmacología , Técnicas Bacteriológicas , Cianuros/farmacología , Diseño de Equipo , Glucosa/metabolismo , Helicobacter pylori/efectos de los fármacos , Ionóforos/farmacología , Cinética , Factores de Tiempo
14.
Arch Microbiol ; 169(5): 393-6, 1998 May.
Artículo en Inglés | MEDLINE | ID: mdl-9560419

RESUMEN

Cloning and sequencing of an approximately 6.0-kb chromosomal DNA fragment from Helicobacter felis revealed five complete open reading frames. The deduced amino acid sequence of one ORF exhibited sequence similarity to the FtsH protein, an ATP-dependent metalloprotease, from various bacterial species. The encoded protein consists of 638 amino acid residues with a molecular mass of 70.2 kDa. The hydropathy profile of the FtsH protein predicted two N-terminal transmembrane regions that were confirmed experimentally. Insertion of ftsH into a new versatile expression vector resulted in overexpression of FtsH protein in Escherichia coli. In addition, the E. coli ftsH gene could be replaced by the H. felis homologue to allow reduced growth and tenfold increased lysogenization by temperate phage lambda.


Asunto(s)
Proteínas Bacterianas/fisiología , Bacteriófago lambda/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Helicobacter/genética , Lisogenia/genética , Proteínas de la Membrana/fisiología , Proteasas ATP-Dependientes , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Membrana Celular/enzimología , Mapeo Cromosómico , Clonación Molecular , Escherichia coli/genética , Escherichia coli/virología , Proteínas de Escherichia coli , Genes Bacterianos/genética , Helicobacter/enzimología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Metaloendopeptidasas/química , Metaloendopeptidasas/genética , Metaloendopeptidasas/fisiología , Operón/genética , Proteínas Recombinantes de Fusión , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Temperatura
15.
J Chromatogr A ; 800(1): 29-37, 1998 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-9561752

RESUMEN

Metal ion-binding of synthetic peptides containing HxH and CxxC motifs was investigated by electrospray ionization mass spectrometry (ESI-MS) and metal chelate affinity chromatography. A high affinity of Ni2+ and Cu2+ to HxH containing sequences was found. Based on their natural metal ion-binding potential it was possible to include metal affinity chromatography in the purification process of two proteins without using an additional His-tag sequence: ATPase-439, a P type ATPase from Helicobacter pylori and the amyloid precursor protein (APP).


Asunto(s)
Adenosina Trifosfatasas/aislamiento & purificación , Cromatografía de Afinidad/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Western Blotting , Cobre/química , Electroforesis en Gel de Poliacrilamida , Sueros Inmunes/inmunología , Datos de Secuencia Molecular , Níquel/química , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
16.
Gastroenterology ; 114(1): 58-70, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9428219

RESUMEN

BACKGROUND & AIMS: The relative role of internal urease for acid protection of Helicobacter pylori is unknown. The aim of this study was to determine the comparative importance of internal and external urease under acidic conditions. METHODS: The pH optimum and measured Michaelis constant for urea of external urease and urease in intact bacteria at different medium pH (pHout) were measured using 14CO2 release from 14C-urea. The effect of urea on membrane potential and bacterial cytoplasmic pH was measured at different fixed pHout. 35S-methionine labeling and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of labeled proteins in the organism and medium measured protein synthesis at different pHout and mechanisms of urease externalization. RESULTS: External urease had activity between pH 5.0 and 8.5 and internal urease between pHout 2.5 and 6.5, and its Michaelis constant at pHout 7.5 was 300 mmol/L but at pHout 4.5 was 0.5 mmol/L, similar to free urease. The addition of 5 mmol/L urea to bacteria at fixed pHout from 3.0 to 6.0 elevated potential to about -105 mV and periplasmic pH to about pH 6.2. Protein synthesis occurred mainly between pH 6.5 and 8.0, and urease activity resulted in increased protein synthesis at acidic pH. The labeling pattern of intrabacterial and released protein was similar. CONCLUSIONS: Intracellular urease activity is regulated by external pH, defends against gastric acidity by increasing periplasmic pH and membrane potential, and stimulates protein synthesis at acidic pH. External urease is produced mostly by cell lysis.


Asunto(s)
Ácido Gástrico/metabolismo , Helicobacter pylori/enzimología , Ureasa/fisiología , Concentración de Iones de Hidrógeno , Potenciales de la Membrana
17.
J Bacteriol ; 180(2): 317-29, 1998 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9440521

RESUMEN

The cop operons of Helicobacter pylori and Helicobacter felis were cloned by gene library screening. Both operons contain open reading frames for a P-type ion pump (CopA) with homology to Cd2+ and Cu2+ ATPases and a putative ion binding protein (CopP), the latter representing a CopZ homolog of the copYZAB operon of Enterococcus hirae. The predicted CopA ATPases contained an N-terminal GMXCXXC ion binding motif and a membrane-associated CPC sequence. A synthetic N-terminal peptide of the H. pylori CopA ATPase bound to Cu2+ specifically, and gene disruption mutagenesis of CopA resulted in an enhanced growth sensitivity of H. pylori to Cu2+ but not to other divalent cations. As determined experimentally, H. pylori CopA contains four pairs of transmembrane segments (H1 to H8), with the ATP binding and phosphorylation domains lying between H6 and H7, as found for another putative transition metal pump of H. pylori (K. Melchers, T. Weitzenegger, A. Buhmann, W. Steinhilber, G. Sachs, and K. P. Schäfer, J. Biol. Chem. 271:446-457, 1996). The corresponding transmembrane segments of the H. felis CopA pump were identified by hydrophobicity analysis and via sequence similarity. To define functional domains, similarly oriented regions of the two enzymes were examined for sequence identity. Regions with high degrees of identity included the N-terminal Cu2+ binding domain, the regions of ATP binding and phosphorylation in the energy transduction domain, and a transport domain consisting of the last six transmembrane segments with conserved cysteines in H4, H6, and H7. The data suggest that H. pylori and H. felis employ conserved mechanisms of ATPase-dependent copper resistance.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/genética , Helicobacter/genética , Operón , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Southern Blotting , Membrana Celular/metabolismo , ADN Bacteriano , Helicobacter/enzimología , Metales/metabolismo , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Especificidad de la Especie
18.
J Recept Signal Transduct Res ; 17(1-3): 29-56, 1997.
Artículo en Inglés | MEDLINE | ID: mdl-9029480

RESUMEN

A method of in vitro translation scanning was applied to a variety of polytopic integral membrane proteins, a transition metal P type ATPase from Helicobacter pylori, the SERCA 2 ATPase, the gastric H+,K+ ATPase, the CCK-A receptor and the human ileal bile acid transporter. This method used vectors containing the N terminal region of the gastric H+,K+ ATPase or the N terminal region of the CCK-A receptor, coupled via a linker region to the last 177 amino acids of the beta-subunit of the gastric H+,K+ ATPase. The latter contains 5 potential N-linked glycosylation sites. Translation of vectors containing the cDNA encoding one, two or more putative transmembrane domains in the absence or presence of microsomes allowed determination of signal anchor or stop transfer properties of the putative transmembrane domains by the molecular weight shift on SDS PAGE. The P type ATPase from Helicobacter pylori showed the presence of 8 transmembrane segments with this method. The SERCA 2 Ca2+ ATPase with this method had 9 transmembrane co-translational insertion domains and coupled with other evidence these data resulted in a 11 transmembrane segment model. Translation of segments of the gastric H+,K+ ATPase provided evidence for only 7 transmembrane segments but coupled with other data established a 10 membrane segment model. The G7 protein, the CCK-A receptor showed the presence of 6 of the 7 transmembrane segments postulated for this protein. Translation of segments of the human ileal bile acid transporter showed the presence of 8 membrane insertion domains. However, translation of the intact protein provided evidence for an odd number of transmembrane segments, resulting in a tentative model containing 7 or 9 transmembrane segments. Neither G7 type protein appeared to have an arrangement of sequential topogenic signals consistent with the final assembled protein. This method provides a useful addition to methods of determining membrane domains of integral membrane proteins but must in general be utilized with other methods to establish the number of transmembrane alpha-helices.


Asunto(s)
Proteínas de la Membrana/química , Transportadores de Anión Orgánico Sodio-Dependiente , Biosíntesis de Proteínas , Simportadores , Secuencia de Aminoácidos , Animales , Secuencia de Bases , ATPasas Transportadoras de Calcio/biosíntesis , ATPasas Transportadoras de Calcio/química , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/química , ATPasa Intercambiadora de Hidrógeno-Potásio/biosíntesis , ATPasa Intercambiadora de Hidrógeno-Potásio/química , Helicobacter pylori/enzimología , Humanos , Técnicas In Vitro , Proteínas de la Membrana/biosíntesis , Datos de Secuencia Molecular , Conformación Proteica , Receptor de Colecistoquinina A , Receptores de Colecistoquinina/biosíntesis , Receptores de Colecistoquinina/química
20.
Gastroenterology ; 111(4): 886-900, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8831583

RESUMEN

BACKGROUND & AIMS: Responses of the proton motive force (the driving force for protons) in Helicobacter pylori to varying medium pH may explain gastric colonization. The aim of this study was to determine the effect of external pH (pHout) on the proton motive force, the sum of the pH gradient, and the potential difference across the bacterial membrane. METHODS: Intracellular pH (pHin) was measured by bis-carboxyethyl-carboxy fluorescein fluorescence and transmembrane potential difference (PD) by fluorescent quenching of 3,3'-dipropyl thiadicarbocyanine iodide at differing pHout and was correlated with survival. RESULTS: PD was -131 +/- 0.36 mV (n = 3), and pHin was about 8.4 at loading pHout 7.0. PD increased as pHout was increased from 4.0 to 8.0, giving a constant proton motive force of about -220 mV. Outside these limits, PD collapsed irreversibly to zero. Addition of 5 mmol/L urea to weak buffer at pH 3.0 or 3.5 prevented irreversible collapse of PD by elevation of pHout caused by NH3 production. Urea addition to weak buffer at pH 7.0 collapsed the PD as urease activity increased the pHout to about 8.4. Survival was also limited to this range of pHout. CONCLUSIONS: H. pylori survives over the range of pHout where it maintains a proton motive force. The effect of urease activity on pHout, while allowing gastric survival in acidic media, may limit survival in nonacidic media.


Asunto(s)
Helicobacter pylori/metabolismo , Fuerza Protón-Motriz , Cloruro de Amonio/farmacología , Antimicina A/farmacología , Cianuros/farmacología , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA