Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Vis Exp ; (153)2019 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-31762455

RESUMEN

CO2 transformations using a one-pot two-step method are presented herein. The purpose of the method is to give access to a variety of value-added products and notably to generate chiral carbon centers. The crucial first step consists in the selective double hydroboration of CO2 catalyzed by an iron hydride complex. The product obtained with this 4 e- reduction is a rare bis(boryl)acetal, compound 1, which is subjected in situ to three different reactions in a second step. The first reaction concerns a condensation reaction with (diisopropyl)phenylamine affording the corresponding imine 2. In the second and third reaction, intermediate 1 reacts with triazol-5-ylidene (Enders' carbene) to afford compounds 3 or 4, depending on the reaction conditions. In both compounds, C-C bonds are formed, and chiral centers are generated from CO2 as the only source of carbon. Compound 4 exhibits two chiral centers obtained in a diastereoselective manner in a formose-type mechanism. We proved that the remaining boryl fragment plays a key role in this unprecedented stereocontrol. The interest of the method stands on the reactive and versatile nature of 1, giving rise to various complex molecules from a single intermediate. The complexity of a two-step method is compensated by the overall short reaction time (2 h for the larger reaction time), and mild reaction conditions (25 °C to 80 °C and 1 to 3 atm of CO2).


Asunto(s)
Dióxido de Carbono/química , Catálisis , Metano/análogos & derivados , Metano/química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA