Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (147)2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31132064

RESUMEN

Lipoprotein particles are predominately transporters of lipids and cholesterol in the bloodstream. Furthermore, they contain small amounts of strands of noncoding microRNA (miRNA). In general, miRNA alters the protein expression profile due to interactions with messenger-RNA (mRNA). Thus, knowledge of the relative and absolute miRNA content of lipoprotein particles is essential to estimate the biological effect of cellular particle uptake. Here, a quantitative real-time polymerase chain reaction (qPCR)-based protocol is presented to determine the absolute miRNA content of lipoprotein particles-exemplified shown for native and miRNA-enriched lipoprotein particles. The relative miRNA content is quantified using multiwell microfluidic array cards. Furthermore, this protocol allows scientists to estimate the cellular miRNA and, thus, the lipoprotein particle uptake rate. A significant increase of the cellular miRNA level is observable when using high-density lipoprotein (HDL) particles artificially loaded with miRNA, whereas incubation with native HDL particles yields no significant effect due to their rather low miRNA content. In contrast, the cellular uptake of low-density lipoprotein (LDL) particles-neither with native miRNA nor artificially loaded with it-did not alter the cellular miRNA level.


Asunto(s)
Lipoproteínas/metabolismo , MicroARNs/metabolismo , Transporte Biológico , Colesterol/metabolismo , Humanos , Lipoproteínas/aislamiento & purificación , MicroARNs/genética , Microfluídica , Control de Calidad , Transcripción Reversa/genética
2.
Genes (Basel) ; 9(11)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30400676

RESUMEN

microRNAs (miRNAs) are post-transcriptional regulators of messenger RNA (mRNA), and transported through the whole organism by-but not limited to-lipoprotein particles. Here, we address the miRNA profile in serum and lipoprotein particles of healthy individuals in comparison with patients with uremia. Moreover, we quantitatively determined the cellular lipoprotein-particle-uptake dependence on the density of lipoprotein particle receptors and present a method for enhancement of the transfer efficiency. We observed a significant increase of the cellular miRNA level using reconstituted high-density lipoprotein (HDL) particles artificially loaded with miRNA, whereas incubation with native HDL particles yielded no measurable effect. Thus, we conclude that no relevant effect of lipoprotein-particle-mediated miRNA-transfer exists under in vivo conditions though the miRNA profile of lipoprotein particles can be used as a diagnostic marker.

3.
Life Sci ; 136: 1-6, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26135622

RESUMEN

AIMS: Patients with chronic kidney disease (CKD) have a high risk to develop atherosclerosis. The capacity of high-density lipoproteins (HDL) or serum to accept cholesterol from macrophages and the capacity of macrophages to export excess cholesterol are critical for the atheroprotective role of reverse cholesterol transport. HDL cholesterol acceptor capacity was reported to be decreased in middle aged hemodialysis patients, but the role of confounding factors remains unclear. MAIN METHODS: We measured the cholesterol acceptor capacity (CAC) of HDL or serum in 12 pediatric and 17 young adult patients with CKD stages 3-5, 14 young adult hemodialysis patients and 15 adult renal transplant recipients without associated diseases and matched controls using THP-1 macrophages. Moreover we studied the cholesterol export capacity (CEC) of patients' monocyte-derived macrophages (HMDMs) to control serum or HDL. KEY FINDINGS: In adults with CKD stages 3-5 serum CAC was slightly increased, whereas CEC of HMDMs was unaltered in both, adult and pediatric patients. In hemodialysis patients, however, serum CAC was markedly reduced to 85±11% of control (p<0.001), presumably due to low serum apolipoprotein A-I. Interestingly, CEC of HMDMs from dialysis patients was increased. In transplant patients no alterations were found. SIGNIFICANCE: CKD without hemodialysis does not reduce cholesterol export from macrophages. Hemodialysis patients might benefit from therapies aiming to restore serum CAC by increasing apolipoprotein A-I. The enhanced export of cholesterol by HMDMs from dialysis patients may represent an adaptive response.


Asunto(s)
Colesterol/metabolismo , Macrófagos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Adolescente , Adulto , Estudios de Casos y Controles , Células Cultivadas , Niño , Femenino , Humanos , Metabolismo de los Lípidos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA