Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(7)2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-37047228

RESUMEN

Heat stress caused by rapidly changing climate warming has become a serious threat to crop growth worldwide. Exogenous cytokinin (CK) kinetin (KT) has been shown to have positive effects in improving salt and drought tolerance in plants. However, the mechanism of KT in heat tolerance in rice is poorly understood. Here, we found that exogenously adequate application of KT improved the heat stress tolerance of rice seedlings, with the best effect observed when the application concentration was 10-9 M. In addition, exogenous application of 10-9 M KT promoted the expression of CK-responsive OsRR genes, reduced membrane damage and reactive oxygen species (ROS) accumulation in rice, and increased the activity of antioxidant enzymes. Meanwhile, exogenous 10-9 M KT treatment significantly enhanced the expression of antioxidant enzymes, heat activation, and defense-related genes. In conclusion, exogenous KT treatment regulates heat tolerance in rice seedlings by modulating the dynamic balance of ROS in plants under heat stress.


Asunto(s)
Oryza , Termotolerancia , Especies Reactivas de Oxígeno/metabolismo , Plantones/metabolismo , Antioxidantes/metabolismo , Cinetina/farmacología , Oryza/genética , Citocininas/metabolismo , Homeostasis
2.
Front Plant Sci ; 11: 618560, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33414802

RESUMEN

Cytokinins (CKs) are a class of phytohormones playing essential roles in various biological processes. However, the mechanisms underlying CK transport as well as its function in plant growth and development are far from being fully elucidated. Here, we characterize the function of PURINE PERMEASE1 (OsPUP1) in rice (Oryza sativa L.). OsPUP1 was predominantly expressed in the root, particularly in vascular cells, and CK treatment can induce its expression. Subcellular localization analysis showed that OsPUP1 was predominantly localized to the endoplasmic reticulum (ER). Overexpression of OsPUP1 resulted in growth defect of various aerial tissues, including decreased leaf length, plant height, grain weight, panicle length, and grain number. Hormone profiling revealed that the CK content was decreased in the shoot of OsPUP1-overexpressing seedling, but increased in the root, compared with the wild type. The CK content in the panicle was also decreased. Quantitative reverse transcription-PCR (qRT-PCR) analysis using several CK type-A response regulators (OsRRs) as the marker genes suggested that the CK response in the shoot of OsPUP1-overexpressing seedling is decreased compared to the wild type when CKs are applied to the root. Genetic analysis revealed that BG3/OsPUP4, a putative plasma membrane-localized CK transporter, overcomes the function of OsPUP1. We hypothesize that OsPUP1 might be involved in importing CKs into ER to unload CKs from the vascular tissues by cell-to-cell transport.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA