Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Plant Physiol ; 231: 124-134, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30261481

RESUMEN

Drought is known to limit carbon assimilation in plants. However, it has been debated whether photosynthesis is primarily inhibited by stomatal or non-stomatal factors. This research assessed the underlying limitations to photosynthesis in peanuts (Arachis hypogaea L.) grown under progressive drought. Specifically, field-grown peanut plants were exposed to either well-watered or drought-stressed conditions during flowering. Measurements included survey measurements of gas exchange, chlorophyll fluorescence, PSII thermotolerance, pigment content, and rapid A-Ci response (RACiR) assessments. Drought significantly decreased stomatal conductance with consequent declines in photosynthesis (AN), actual quantum yield of PSII, and electron transport rate (ETR). Pigment contents were variable and depended on stress severity. Stomatal closure on stressed plants resulted in higher leaf temperatures, but Fv/Fm and PSII thermotolerance were only slightly affected by drought. A strong, hyperbolic relationship was observed between stomatal conductance, AN, and ETR. However, when RACiR analysis was conducted, drought significantly decreased AN at Ci values comparable to drought-stressed plants, indicating non-stomatal limitations to AN. The maximum rate of carboxylation and maximum electron transport rate were severely limited by drought, and chloroplast CO2 concentration (CC) declined substantially under drought along with a comparable increase in partitioning of electron flow to photorespiration. Thus, while stomatal conductance may be a viable reference indicator of water deficit stress in peanut, we conclude that declines in AN were largely due to non-stomatal (diffusional and metabolic) limitations. Additionally, this is the first study to apply the rapid A-Ci response method to peanut, with comparable results to traditional A-Ci methods.


Asunto(s)
Arachis/fisiología , Carbono/metabolismo , Estomas de Plantas/fisiología , Arachis/metabolismo , Clorofila/metabolismo , Deshidratación , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología
2.
J Plant Physiol ; 183: 114-20, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26125121

RESUMEN

Respiratory carbon evolution by leaves under abiotic stress is implicated as a major limitation to crop productivity; however, respiration rates of fully expanded leaves are positively associated with plant growth rates. Given the substantial sensitivity of plant growth to drought, it was hypothesized that predawn respiration rates (RPD) would be (1) more sensitive to drought than photosynthetic processes and (2) highly predictive of water-induced yield variability in Gossypium hirsutum. Two studies (at Tifton and Camilla Georgia) addressed these hypotheses. At Tifton, drought was imposed beginning at the onset of flowering (first flower) and continuing for three weeks (peak bloom) followed by a recovery period, and predawn water potential (ΨPD), RPD, net photosynthesis (AN) and maximum quantum yield of photosystem II (Fv/Fm) were measured throughout the study period. At Camilla, plants were exposed to five different irrigation regimes throughout the growing season, and average ΨPD and RPD were determined between first flower and peak bloom for all treatments. For both sites, fiber yield was assessed at crop maturity. The relationships between ΨPD, RPD and yield were assessed via non-linear regression. It was concluded for field-grown G. hirsutum that (1) RPD is exceptionally sensitive to progressive drought (more so than AN or Fv/Fm) and (2) average RPD from first flower to peak bloom is highly predictive of water-induced yield variability.


Asunto(s)
Sequías , Gossypium/fisiología , Agua/fisiología , Flores/crecimiento & desarrollo , Georgia , Hojas de la Planta/fisiología , Distribución Aleatoria , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA