Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 13(3): e2301894, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37922888

RESUMEN

Neuronal disorders are characterized by the loss of functional neurons and disrupted neuroanatomical connectivity, severely impacting the quality of life of patients. This study investigates a novel electroconductive nanocomposite consisting of glycine-derived carbon nanodots (GlyCNDs) incorporated into a collagen matrix and validates its beneficial physicochemical and electro-active cueing to relevant cells. To this end, this work employs mouse induced pluripotent stem cell (iPSC)-derived neural progenitor (NP) spheroids. The findings reveal that the nanocomposite markedly augmented neuronal differentiation in NP spheroids and stimulate neuritogenesis. In addition, this work demonstrates that the biomaterial-driven enhancements of the cellular response ultimately contribute to the development of highly integrated and functional neural networks. Lastly, acute dizocilpine (MK-801) treatment provides new evidence for a direct interaction between collagen-bound GlyCNDs and postsynaptic N-methyl-D-aspartate (NMDA) receptors, thereby suggesting a potential mechanism underlying the observed cellular events. In summary, the findings establish a foundation for the development of a new nanocomposite resulting from the integration of carbon nanomaterials within a clinically approved hydrogel, toward an effective biomaterial-based strategy for addressing neuronal disorders by restoring damaged/lost neurons and supporting the reestablishment of neuroanatomical connectivity.


Asunto(s)
Nanocompuestos , Calidad de Vida , Animales , Ratones , Materiales Biocompatibles , Diferenciación Celular , Colágeno , Proyección Neuronal
2.
Small ; 19(31): e2300541, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37058095

RESUMEN

Biodiesel remains one of the most promising alternatives to replace fossil fuel-derived petrodiesel. Nonetheless, conventional biodiesel synthesis relies on homogeneous alkali-based catalysts that involve long and tedious purification steps , increasing biodiesel production costs. Heterogeneous catalysts have emerged as promising alternatives to circumvent these drawbacks, as they can easily be recovered and reused. Herein, polymeric carbon nitride dots and nanosheets are synthesized through a solid-phase reaction between urea and sodium citrate. Their morphology and surface chemistry are tuned by varying the precursor's ratio, and the materials are investigated as catalysts in the transesterification reaction of canola oil to biodiesel. A conversion of > 98% is achieved using a 5 wt% catalyst loading, oil to methanol ratio of 1:36 at 90 °C for 4 h, with the performance maintained over at least five reuse cycles. In addition, the effect of the transesterification reaction parameters on the reaction kinetics is evaluated, which follows a pseudo-first-order (PFO) regime. Combined with a deep understanding of the catalyst's surface, these results have allowed us to propose a reaction mechanism similar to the one observed for homogenous alkali catalysts. These carbon nitride-based nanoparticles offer a metal-free and cost-effective alternative to conventional homogeneous and metal-based heterogeneous catalysts.

3.
J Colloid Interface Sci ; 606(Pt 1): 67-76, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34388574

RESUMEN

Carbon dots have garnered significant attention owing to their versatile and highly tunable optical properties; however, the origins and the underlying mechanism remains a subject of debate especially for dual fluorescent systems. Here, we have prepared carbon dots from glutathione and formamide precursors via a one-pot solvothermal synthesis. Steady state and dynamic techniques indicate that these dual fluorescent dots possess distinct emissive carbon-core and a molecular states, which are responsible for the blue and red optical signatures, respectively. To further glean information into the fluorescence mechanism, electrochemical analysis was used to measure the bandgaps of the two fluorescent states, while femtosecond transient absorption spectroscopy evidenced the two-state model based on the observed heterogeneity and bimodal spectral distribution. Our findings provide novel and fundamental insights on the optical properties of dual fluorescent dots, which can translate to more effective and targeted application development particularly in bioimaging, multiplexed sensing and photocatalysis.


Asunto(s)
Carbono , Puntos Cuánticos , Glutatión , Espectrometría de Fluorescencia
4.
Nanoscale ; 7(1): 294-300, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25408246

RESUMEN

In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and a metal-catalyzed aqueous oxidation of heptanol with molecular oxygen.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA