Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(14): e34554, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149035

RESUMEN

Periodontal disease is triggered by surface bacterial biofilms where bacteria are less susceptible to antibiotic treatment. The development of liposome-based delivery mechanisms for the therapeutic use of antimicrobial peptides is an attractive alternative in this regard. The cationic antimicrobial peptide LL-37 (human cathelicidin) is well-known to exert antibacterial activity against P orphyromonas gingivalis, a keystone oral pathogen. However, the antibacterial activity of the 16-amino acid fragment (LL17-32) of LL-37, is unknown. In addition, there are still gaps in studies using liposomal formulations as delivery vehicles of antibacterial peptides against this pathogen. This study was designed to examine the influence of the different types of liposomal formulations to associate and deliver LL17-32 to act against P. gingivalis. Chitosans of varying Mw and degree of acetylation (DA) were adsorbed at the surface of soya lecithin (SL) liposomes. Their bulk (average hydrodynamic size, ζ-potential and membrane fluidity) and ultrastructural (d-spacing, half-bilayer thickness and the water layer thickness) biophysical properties were investigated by a panel of techniques (DLS, SAXS, M3-PALS, fluorescence spectroscopy and TEM imaging). Their association efficiency, in vitro release, stability, and efficacy in killing the periodontal pathogen P. gingivalis were also investigated. All liposomal systems possessed spherical morphologies and good shelf-life stabilities. Under physiological conditions, chitosan formulations with a high DA demonstrated enhanced stability in comparison to low DA-chitosan formulations. Chitosans and LL17-32 both decreased SL-liposomal membrane fluidity. LL17-32 exhibited a high degree of association with SL-liposomes without in vitro release. In biological studies, free LL17-32 or chitosans alone, demonstrated microbicidal activity against P. gingivalis, however this was attenuated when LL17-32 was loaded onto the SL-liposome delivery system, presumably due to the restrained release of the peptide. A property that could be harnessed in future studies (e.g., oral mucoadhesive slow-release formulations).

2.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38474098

RESUMEN

Type 2 diabetes mellitus (T2DM) represents a significant health problem globally and is linked to a number of complications such as cardiovascular disease, bone fragility and periodontitis. Autologous bone marrow mesenchymal stem cells (BM-MSCs) are a promising therapeutic approach for bone and periodontal regeneration; however, the effect of T2DM on the expression of osteogenic and periodontal markers in BM-MSCs is not fully established. Furthermore, the effect of the presence of comorbidities such as diabetes and osteoarthritis on BM-MSCs is also yet to be investigated. In the present study, BM-MSCs were isolated from osteoarthritic knee joints of diabetic and nondiabetic donors. Both cell groups were compared for their clonogenicity, proliferation rates, MSC enumeration and expression of surface markers. Formation of calcified deposits and expression of osteogenic and periodontal markers were assessed after 1, 2 and 3 weeks of basal and osteogenic culture. Diabetic and nondiabetic BM-MSCs showed similar clonogenic and growth potentials along with comparable numbers of MSCs. However, diabetic BM-MSCs displayed lower expression of periostin (POSTN) and cementum protein 1 (CEMP-1) at Wk3 osteogenic and Wk1 basal cultures, respectively. BM-MSCs from T2DM patients might be suitable candidates for stem cell-based therapeutics. However, further investigations into these cells' behaviours in vitro and in vivo under inflammatory environments and hyperglycaemic conditions are still required.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Mesenquimatosas , Humanos , Diferenciación Celular , Diabetes Mellitus Tipo 2/metabolismo , Osteogénesis , Células Madre Mesenquimatosas/metabolismo , Articulación de la Rodilla , Células de la Médula Ósea
3.
J Med Microbiol ; 70(3)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33734952

RESUMEN

Introduction. Oral tissues are generally homeostatic despite exposure to many potential inflammatory agents including the resident microbiota. This requires the balancing of inflammation by regulatory mechanisms and/or anti-inflammatory commensal bacteria. Thus, the levels of anti-inflammatory commensal bacteria in resident populations may be critical in maintaining this homeostatic balance.Hypothesis/Gap Statement. The incidence of immunosuppressive streptococci in the oral cavity is not well established. Determining the proportion of these organisms and the mechanisms involved may help to understand host-microbe homeostasis and inform development of probiotics or prebiotics in the maintenance of oral health.Aim. To determine the incidence and potential modes of action of immunosuppressive capacity in resident oral streptococci.Methodology. Supragingival plaque was collected from five healthy participants and supragingival and subgingival plaque from five with gingivitis. Twenty streptococci from each sample were co-cultured with epithelial cells±flagellin or LL-37. CXCL8 secretion was detected by ELISA, induction of cytotoxicity in human epithelial cells by lactate dehydrogenase release and NFκB-activation using a reporter cell line. Bacterial identification was achieved through partial 16S rRNA gene sequencing and next-generation sequencing.Results. CXCL8 secretion was inhibited by 94/300 isolates. Immunosuppressive isolates were detected in supragingival plaque from healthy (4/5) and gingivitis (4/5) samples, and in 2/5 subgingival (gingivitis) plaque samples. Most were Streptococcus mitis/oralis. Seventeen representative immunosuppressive isolates all inhibited NFκB activation. The immunosuppressive mechanism was strain specific, often mediated by ultra-violet light-labile factors, whilst bacterial viability was essential in certain species.Conclusion. Many streptococci isolated from plaque suppressed epithelial cell CXCL8 secretion, via inhibition of NFκB. This phenomenon may play an important role in oral host-microbe homeostasis.


Asunto(s)
Inmunomodulación , Interleucina-8/metabolismo , Microbiota/inmunología , Boca/microbiología , FN-kappa B/metabolismo , Streptococcus/inmunología , Células A549 , Línea Celular , Células Epiteliales/metabolismo , Encía/microbiología , Gingivitis/microbiología , Humanos , Microbiota/genética , Streptococcus/clasificación , Streptococcus/genética , Streptococcus/aislamiento & purificación
4.
Ann Rheum Dis ; 80(2): 162-168, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33004333

RESUMEN

OBJECTIVES: An increased prevalence of periodontitis and perturbation of the oral microbiome has been identified in patients with rheumatoid arthritis (RA). The periodontal pathogen Porphyromonas gingivalis may cause local citrullination of proteins, potentially triggering anti-citrullinated protein antibody production. However, it is not known if oral dysbiosis precedes the onset of clinical arthritis. This study comprehensively characterised the oral microbiome in anti-cyclic citrullinated peptide (anti-CCP) positive at-risk individuals without clinical synovitis (CCP+at risk). METHODS: Subgingival plaque was collected from periodontally healthy and diseased sites in 48 CCP+at risk, 26 early RA and 32 asymptomatic healthy control (HC) individuals. DNA libraries were sequenced on the Illumina HiSeq 3000 platform. Taxonomic profile and functional capability of the subgingival microbiome were compared between groups. RESULTS: At periodontally healthy sites, CCP+at risk individuals had significantly lower microbial richness compared with HC and early RA groups (p=0.004 and 0.021). Microbial community alterations were found at phylum, genus and species levels. A large proportion of the community differed significantly in membership (523 species; 35.6%) and structure (575 species; 39.1%) comparing CCP+at risk and HC groups. Certain core species, including P. gingivalis, had higher relative abundance in the CCP+at risk group. Seventeen clusters of orthologous gene functional units were significantly over-represented in the CCP+at risk group compared with HC (adjusted p value <0.05). CONCLUSION: Anti-CCP positive at-risk individuals have dysbiotic subgingival microbiomes and increased abundance of P. gingivalis compared with controls. This supports the hypothesis that the oral microbiome and specifically P. gingivalis are important in RA initiation.


Asunto(s)
Artritis Reumatoide/microbiología , Disbiosis/inmunología , Microbiota/inmunología , Periodontitis/microbiología , Porphyromonas gingivalis/inmunología , Adulto , Anticuerpos Antiproteína Citrulinada/sangre , Anticuerpos Antiproteína Citrulinada/inmunología , Artritis Reumatoide/inmunología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Disbiosis/microbiología , Femenino , Encía/inmunología , Encía/microbiología , Humanos , Masculino , Persona de Mediana Edad , Periodontitis/inmunología , Factores de Riesgo
5.
JAMA Netw Open ; 2(6): e195394, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31173126

RESUMEN

Importance: The prevalence of periodontitis is increased in patients with rheumatoid arthritis (RA) and periodontopathic bacteria can citrullinate proteins. Periodontitis may, therefore, be an initiator of RA and a target for prevention. Periodontal disease and periodontal bacteria have not been investigated in at-risk individuals with RA autoimmunity but no arthritis. Objective: To examine periodontal disease and periodontopathic bacteria in anti-cyclic citrullinated protein (anti-CCP) antibody-positive at-risk individuals without arthritis. Design, Setting, and Participants: This cross-sectional study took place at a teaching hospital from April 27, 2015, to May 8, 2017. Forty-eight anti-CCP-positive individuals without arthritis (CCP+ at-risk) were recruited nationally. Twenty-six patients with early RA (ERA) and 32 healthy control individuals were recruited locally. Data were analyzed between June 1, 2017, and December 1, 2017. Interventions: Periodontal assessment and examination of joints using ultrasonography. Main Outcomes and Measures: Prevalence of diseased periodontal sites, clinical periodontitis, and periodontal inflamed surface area in CCP+ at-risk individuals compared with patients with ERA and healthy individuals matched for age and smoking. Paired-end sequencing of DNA from subgingival plaque from diseased and healthy periodontal sites was performed and DNA was profiled and analyzed. Results: A total of 48 CCP+ at-risk individuals (mean [SD] age, 51.9 [11.4] years; 31 [65%] female), 26 patients with ERA (mean [SD] age, 54.4 [16.7] years; 14 [54%] female), and 32 healthy individuals (mean [SD] age, 49.4 [15.3] years; 19 [59%] female) were recruited. Of 48 CCP+ at-risk individuals, 46 had no joint inflammation on ultrasonography. Thirty-five CCP+ at-risk individuals (73%), 12 healthy individuals (38%), and 14 patients with ERA (54%) had clinical periodontitis. The median (interquartile range) percentage of periodontal sites with disease was greater in CCP+ at-risk individuals compared with healthy individuals (3.3% [0%-11.3%] vs 0% [0%-0.7%]) and similar to patients with ERA (1.1% [0%-13.1%]). Median (interquartile range) periodontal inflamed surface area was higher in CCP+ at-risk individuals compared with healthy individuals (221 mm2 [81-504 mm2] vs 40 mm2 [12-205 mm2]). Patients with CCP+ at-risk had increased relative abundance of Porphyromonas gingivalis (but not Aggregatibacter actinomycetemcomitans) at healthy periodontal sites compared with healthy individuals (effect size, 3.00; 95% CI, 1.71-4.29) and patients with ERA (effect size, 2.14; 95% CI, 0.77-3.52). Conclusions and Relevance: This study found increased prevalence of periodontitis and P gingivalis in CCP+ at-risk individuals. This suggests periodontitis and P gingivalis are associated with disease initiation and could be targets for preventive interventions in RA.


Asunto(s)
Infecciones por Bacteroidaceae/epidemiología , Periodontitis/epidemiología , Adulto , Anciano , Anticuerpos Antiproteína Citrulinada/metabolismo , Artritis Reumatoide/epidemiología , Artritis Reumatoide/inmunología , Infecciones por Bacteroidaceae/inmunología , Biomarcadores/metabolismo , Estudios Transversales , Inglaterra/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Periodontitis/microbiología , Examen Físico , Porphyromonas gingivalis , Prevalencia , Factores de Riesgo
6.
Sci Rep ; 9(1): 5491, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30940882

RESUMEN

Periodontitis is associated with shifts in the balance of the subgingival microbiome. Many species that predominate in disease have not been isolated from healthy sites, raising questions as to the origin of these putative pathogens. The study aim was to determine whether periodontal pathogens could be enriched from pooled saliva, plaque and tongue samples from dentally-healthy adult volunteers using growth media that simulate nutritional aspects of the inflamed subgingival environment. The microbiome was characterised before and after enrichment using established metagenomic approaches, and the data analysed bioinformatically to identify major functional changes. After three weeks, there was a shift from an inoculum in which Streptococcus, Haemophilus, Neisseria, Veillonella and Prevotella species predominated to biofilms comprising an increased abundance of taxa implicated in periodontitis, including Porphyromonas gingivalis, Fretibacterium fastidiosum, Filifactor alocis, Tannerella forsythia, and several Peptostreptococcus and Treponema spp., with concomitant decreases in health-associated species. Sixty-four species were present after enrichment that were undetectable in the inoculum, including Jonquetella anthropi, Desulfovibrio desulfuricans and Dialister invisus. These studies support the Ecological Plaque Hypothesis, providing evidence that putative periodontopathogens are present in health at low levels, but changes to the subgingival nutritional environment increase their competitiveness and drive deleterious changes to biofilm composition.


Asunto(s)
Bacterias/clasificación , Biopelículas/crecimiento & desarrollo , Placa Dental/microbiología , Saliva/microbiología , Lengua/microbiología , Adulto , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biopelículas/clasificación , Femenino , Voluntarios Sanos , Humanos , Masculino , Filogenia , Análisis de Componente Principal , Análisis de Secuencia de ADN/métodos
8.
Growth Horm IGF Res ; 42-43: 14-21, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30071469

RESUMEN

The IGF axis is represented by two growth factors (IGF1 and IGF2), two cognate cell surface receptors (IGF1R and IGF2R), six soluble high affinity IGF binding proteins (IGFBP1-6) and several IGFBP proteases. IGF1 and IGF2 are present at high concentrations in bone and play a crucial role in the maintenance and differentiation of both foetal and adult skeleton. In order to understand the role of the IGF axis in bone and other tissues it is necessary to profile the expression and activity of all genes in the axis together with the activity of relevant ancillary proteins (including IGFBP proteases). In the current report we used differentiating human dental pulp cells (hDPC) to examine the expression and activity of the IGF axis during osteogenic differentiation of these cells. We found that, with the exception of IGF1 and IGFBP1, all components of the IGF axis are expressed in hDPCs. IGFBP-4 is the most abundantly expressed IGFBP species at both mRNA and protein levels under both basal and osteogenic conditions. Although we found no difference in IGFBP-4 expression under osteogenic conditions, we report increased expression and activity of pregnancy associated plasma protein-A (PAPP-A - an IGFBP-4 proteinase) leading to increased IGFBP-4 proteolysis in differentiating cell cultures. Further to this we report increased expression of IGF-2 (an activator of PAPP-A), and decreased expression of stanniocalcin-2 (STC2- a recently discovered inhibitor of PAPP-A) under osteogenic conditions. We also demonstrate that STC2 and PAPP-A are able to form complexes in hDPC conditioned medium indicating the potential for regulation of IGFBP-4 proteolysis through this mechanism. We suggest that these changes in the expression and activity of the IGF axis may represent part of an osteogenic signature characteristic of differentiating hDPCs.


Asunto(s)
Pulpa Dental/metabolismo , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Osteoblastos/metabolismo , Osteogénesis , Proteína Plasmática A Asociada al Embarazo/metabolismo , Diferenciación Celular , Células Cultivadas , Pulpa Dental/citología , Regulación de la Expresión Génica , Humanos , Osteoblastos/citología , Transducción de Señal
9.
Adv Healthc Mater ; 7(12): e1701483, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29696813

RESUMEN

Staphylococcus aureus is one of the most significant human pathogens that is frequently isolated in a wide range of superficial and systemic infections. The ability of S. aureus to invade and survive within host cells such as keratinocytes and host immune cells has been increasingly recognized as a potential factor in persistent infections and treatment failures. The incorporation of antibiotics into hyaluronan-cholesterol nanohydrogels represents a novel paradigm in the delivery of therapeutic agents against intracellular bacteria. The work presented herein shows that NHs quickly enter human keratinocytes and accumulate into lysosomes. When used for targeting intracellular S. aureus the antimicrobial activity of loaded levofloxacin is enhanced, possibly changing the antibiotic intracellular fate from cytosol to lysosome. Indeed, gentamicin, an antibiotic that predominantly accumulates in lysosomes, shows significant and equal antibacterial activity when entrapped into NHs. These results strongly suggest that lysosomal formulations may display preferential activity toward intracellular S. aureus, opening new avenues for the use of HA-based NHs for treatment of such skin infections.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ácido Hialurónico , Hidrogeles , Queratinocitos/microbiología , Levofloxacino , Nanoestructuras , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus/crecimiento & desarrollo , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/farmacocinética , Ácido Hialurónico/farmacología , Hidrogeles/química , Hidrogeles/farmacocinética , Hidrogeles/farmacología , Queratinocitos/patología , Levofloxacino/química , Levofloxacino/farmacocinética , Levofloxacino/farmacología , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Infecciones Cutáneas Estafilocócicas/metabolismo , Infecciones Cutáneas Estafilocócicas/patología
10.
Artículo en Inglés | MEDLINE | ID: mdl-29503631

RESUMEN

The insulin-like growth factor (IGF) axis is required for the differentiation, development, and maintenance of bone tissue. Accordingly, dysregulation of this axis is associated with various skeletal pathologies including growth abnormalities and compromised bone structure. It is becoming increasingly apparent that the action of the IGF axis must be viewed holistically taking into account not just the actions of the growth factors and receptors, but also the influence of soluble high affinity IGF binding proteins (IGFBPs).There is a recognition that IGFBPs exert IGF-dependent and IGF-independent effects in bone and other tissues and that an understanding of the mechanisms of action of IGFBPs and their regulation in the pericellular environment impact critically on tissue physiology. In this respect, a group of IGFBP proteinases (which may be considered as ancillary members of the IGF axis) play a crucial role in regulating IGFBP function. In this model, cleavage of IGFBPs by specific proteinases into fragments with lower affinity for growth factor(s) regulates the partition of IGFs between IGFBPs and cell surface IGF receptors. In this review, we examine the importance of IGFBP function in bone tissue with special emphasis on the role of pregnancy associated plasma protein-A (PAPP-A). We examine the function of PAPP-A primarily as an IGFBP-4 proteinase and present evidence that PAPP-A induced cleavage of IGFBP-4 is potentially a key regulatory step in bone metabolism. We also highlight some recent findings with regard to IGFBP-2 and IGFBP-5 (also PAPP-A substrates) function in bone tissue and briefly discuss the actions of the other three IGFBPs (-1, -3, and -6) in this tissue. Although our main focus will be in bone we will allude to IGFBP activity in other cells and tissues where appropriate.

11.
Best Pract Res Clin Rheumatol ; 31(1): 19-30, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-29221594

RESUMEN

There is an epidemiological association between periodontitis and rheumatoid arthritis (RA), which is hypothesised to lead to enhanced generation of RA-related autoantibodies that can be detected years before the onset of RA symptoms. Periodontitis is a common dysbiotic disease; tissue damage occurs because the immune system fails to limit both the resident microbial community and the associated local immune response. Certain periodontal bacteria, including Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, may contribute to RA autoantibody production through direct post-translational modification of proteins or, indirectly, by influencing neutrophil-mediated neo-epitope generation. Oral bacteria that invade the blood may also contribute to chronic inflammatory responses and generation of autoantibodies. The putative association between periodontitis and the development of RA raises the potential of finding novel predictive markers of disease and disease progression and for periodontitis treatment to be included in the future as an adjunct to conventional RA immunotherapy or as part of a preventive strategy.


Asunto(s)
Artritis Reumatoide/inmunología , Artritis Reumatoide/microbiología , Periodontitis/complicaciones , Autoanticuerpos/sangre , Progresión de la Enfermedad , Humanos , Periodontitis/microbiología
12.
J Oral Microbiol ; 7: 26941, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25661061

RESUMEN

Immunomodulatory commensal bacteria are proposed to be essential for maintaining healthy tissues, having multiple roles including priming immune responses to ensure rapid and efficient defences against pathogens. The default state of oral tissues, like the gut, is one of inflammation which may be balanced by regulatory mechanisms and the activities of anti-inflammatory resident bacteria that modulate Toll-like receptor (TLR) signalling or NF-κB activation, or influence the development and activities of immune cells. However, the widespread ability of normal resident organisms to suppress inflammation could impose an unsustainable burden on the immune system and compromise responses to pathogens. Immunosuppressive resident bacteria have been isolated from the mouth and, for example, may constitute 30% of the resident streptococci in plaque or on the tongue. Their roles in oral health and dysbiosis remain to be determined. A wide range of bacterial components and/or products can mediate immunomodulatory activity, raising the possibility of development of alternative strategies for therapy and health promotion using probiotics, prebiotics, or commensal-derived immunomodulatory molecules.

13.
Mol Immunol ; 58(2): 160-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24365750

RESUMEN

Mutations in the RAS family of oncogenes are highly prevalent in human cancer and, amongst its manifold effects, oncogenic RAS impairs the expression of components of the antigen presentation pathway. This allows evasion of cytotoxic T lymphocytes (CTL). CTL and natural killer (NK) cells are reciprocally regulated by MHC class I molecules and any gain in CTL recognition obtained by therapeutic inactivation of oncogenic RAS may be offset by reduced NK cell activation. We have investigated the consequences of targeted inactivation of oncogenic RAS on the recognition by both CTL and NK cells. Inactivation of oncogenic RAS, either by genetic deletion or inactivation with an inducible intracellular domain antibody (iDAb), increased MHC class I expression in human colorectal cell lines. The common RAS mutations, at codons 12, 13 and 61, all inhibited antigen presentation. Although MHC class I modulates the activity of both CTL and NK cells, the enhanced MHC class I expression resulting from inactivation of mutant KRAS did not significantly affect the in vitro recognition of these cell lines by either class of cytotoxic lymphocyte. These results show that oncogenic RAS and its downstream signalling pathways modulate the antigen presentation pathway and that this inhibition is reversible. However, the magnitude of these effects was not sufficient to alter the in vitro recognition of tumour cell lines by either CTL or NK cells.


Asunto(s)
Anticuerpos/farmacología , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/inmunología , Linfocitos T Citotóxicos/inmunología , Proteínas ras/inmunología , Antígenos de Superficie/metabolismo , Línea Celular Tumoral , Eliminación de Gen , Células HCT116 , Humanos , Células Asesinas Naturales/inmunología , Activación de Linfocitos/inmunología , Neoplasias/inmunología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Proteínas ras/antagonistas & inhibidores , Proteínas ras/genética
14.
PLoS One ; 6(9): e22842, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21909397

RESUMEN

Immune evasion is now recognized as a key feature of cancer progression. In animal models, the activity of cytotoxic lymphocytes is suppressed in the tumour microenvironment by the immunosuppressive cytokine, Transforming Growth Factor (TGF)-ß. Release from TGF-ß-mediated inhibition restores anti-tumour immunity, suggesting a therapeutic strategy for human cancer. We demonstrate that human natural killer (NK) cells are inhibited in a TGF-ß dependent manner following chronic contact-dependent interactions with tumour cells in vitro. In vivo, NK cell inhibition was localised to the human tumour microenvironment and primary ovarian tumours conferred TGF-ß dependent inhibition upon autologous NK cells ex vivo. TGF-ß antagonized the interleukin (IL)-15 induced proliferation and gene expression associated with NK cell activation, inhibiting the expression of both NK cell activation receptor molecules and components of the cytotoxic apparatus. Interleukin-15 also promotes NK cell survival and IL-15 excluded the pro-apoptotic transcription factor FOXO3 from the nucleus. However, this IL-15 mediated pathway was unaffected by TGF-ß treatment, allowing NK cell survival. This suggested that NK cells in the tumour microenvironment might have their activity restored by TGF-ß blockade and both anti-TGF-ß antibodies and a small molecule inhibitor of TGF-ß signalling restored the effector function of NK cells inhibited by autologous tumour cells. Thus, TGF-ß blunts NK cell activation within the human tumour microenvironment but this evasion mechanism can be therapeutically targeted, boosting anti-tumour immunity.


Asunto(s)
Antineoplásicos/uso terapéutico , Células Asesinas Naturales/inmunología , Activación de Linfocitos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Factor de Crecimiento Transformador beta/farmacología , Escape del Tumor/efectos de los fármacos , Antineoplásicos/farmacología , Comunicación Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citotoxicidad Inmunológica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-15/farmacología , Células Asesinas Naturales/efectos de los fármacos , Activación de Linfocitos/genética , Modelos Inmunológicos , Neoplasias/patología , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Microambiente Tumoral/efectos de los fármacos
15.
Biochem J ; 431(3): 423-31, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20704564

RESUMEN

Cytotoxic lymphocytes eliminate infected cells and tumours via the perforin-mediated delivery of pro-apoptotic serine proteases known as granzymes. Granzyme B triggers apoptosis via the cleavage of a repertoire of cellular proteins, leading to caspase activation and mitochondrial depolarization. A simple bioinformatics strategy identified a candidate granzyme B cleavage site in the widely expressed BNIP-2 (BCL2/adenovirus E1B-19K protein-interacting protein 2). Granzyme B cleaved recombinant BNIP-2 in vitro and endogenous BNIP-2 was cleaved during the NK (natural killer) cell-mediated killing of tumour cells. Cleavage required the site identified in the bioinformatics screen and was caspase-independent. Expression of either full-length BNIP-2 or a truncated molecule mimicking the granzyme B cleaved form was pro-apoptotic and led to the caspase-dependent cleavage of BNIP-2 at a site distinct from granzyme B cleavage. Inhibition of BNIP-2 expression did not affect the susceptibility to NK cell-mediated killing. Furthermore, target cells in which BID (BH3-interacting domain death agonist) expression was inhibited also remained highly susceptible to NK cell-mediated killing, revealing redundancy in the pro-apoptotic response to human cytotoxic lymphocytes. Such redundancy reduces the opportunity for escape from apoptosis induction and maximizes the chances of immune-mediated clearance of infected cells or tumour cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Citotoxicidad Inmunológica , Granzimas/metabolismo , Células Asesinas Naturales/inmunología , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/química , Proteínas Portadoras/inmunología , Caspasas/metabolismo , Línea Celular , Secuencia Conservada , Granzimas/inmunología , Humanos , Células Asesinas Naturales/metabolismo , Datos de Secuencia Molecular , Alineación de Secuencia , Especificidad por Sustrato
16.
J Immunol ; 183(2): 803-13, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19570824

RESUMEN

NK cells induce apoptosis in target cells via the perforin-mediated delivery of granzyme molecules. Cytotoxic human NK cells can be generated by IL-15-mediated differentiation of CD34(+) cells in vitro and these cultures have been used extensively to analyze the development of the NK cell surface phenotype. We have used NK cell differentiation in vitro together with protease-deficient human NK cells to analyze the acquisition of the cytotoxic phenotype. Granzymes are synthesized as inactive zymogens and are proteolytically activated by the cysteine protease cathepsin C. Cathepsin C is also synthesized as a zymogen and activated by proteolysis. We show that human NK cells generated in vitro undergo granule exocytosis and induce the caspase cascade in target cells. IL-15 and stem cell factor (IL-15 plus SCF) induced the expression of the granzyme B and perforin genes and the activation of cathepsin C and granzyme B zymogens. Perforin activation is also mediated by a cysteine protease and IL-15 plus SCF-mediated differentiation was accompanied by perforin processing. However, cathepsin C-deficient human NK cells revealed that perforin processing could occur in the absence of cathepsin C activity. The combination of IL-15 plus SCF is therefore sufficient to coordinate the development of the NK cell surface phenotype with the expression and proteolytic activation of the cytotoxic machinery, reflecting the central role of IL-15 in NK cell development.


Asunto(s)
Diferenciación Celular , Citotoxicidad Inmunológica , Interleucina-15/fisiología , Células Asesinas Naturales/citología , Péptido Hidrolasas/fisiología , Factor de Células Madre/fisiología , Antígenos de Superficie , Caspasas/metabolismo , Diferenciación Celular/inmunología , Células Cultivadas , Exocitosis , Granzimas , Humanos , Interleucina-15/inmunología , Células Asesinas Naturales/inmunología , Péptido Hidrolasas/inmunología , Perforina , Vesículas Secretoras , Factor de Células Madre/inmunología
17.
Brief Funct Genomic Proteomic ; 7(1): 8-16, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18208863

RESUMEN

Natural killer (NK) cells are lymphocytes with an innate ability to recognize and kill infected cells and tumour cells. Unlike B and T cells, NK cells do not express an antigen receptor. Instead, NK cells detect changes in the phenotype of the target cell surface; malignant transformation or infection resulting in the loss or gain of particular molecules that are detected by inhibitory or activating receptors on the NK cell surface. The identification and characterization of NK cells and their receptors was made possible by monoclonal antibody technology. The ease with which genes and gene products can now be identified and manipulated has accelerated our understanding of NK cell function. Furthermore, gene and protein profiling studies are beginning to refine our understanding of NK cells, their interactions with other cells and their effector mechanisms. This review illustrates some of the basic features of NK cell biology and highlights the contribution made by post-genomic technology in defining the molecular mechanisms by which NK cells identify and kill susceptible targets.


Asunto(s)
Células Asesinas Naturales/inmunología , Apoptosis , Clonación Molecular , Biología Computacional , Genómica , Humanos , Ligandos , Proteómica , Receptores Inmunológicos/genética
18.
Cancer Res ; 67(18): 8444-9, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17875681

RESUMEN

Recent evidence suggests a role for natural killer (NK) cells in the control of multiple myeloma. We show that expression of the NK cell receptor DNAM-1 (CD226) is reduced on CD56(dim) NK cells from myeloma patients with active disease compared with patients in remission and healthy controls. This suggested that this receptor might play a role in NK-myeloma interactions. The DNAM-1 ligands Nectin-2 (CD112) and the poliovirus receptor (PVR; CD155) were expressed by most patient myeloma samples analyzed. NK killing of patient-derived myelomas expressing PVR and/or Nectin-2 was DNAM-1 dependent, revealing a functional role for DNAM-1 in myeloma cell killing. In myeloma cell lines, cell surface expression of PVR was associated with low levels of NKG2D ligands, whereas cells expressing high levels of NKG2D ligands did not express PVR protein or mRNA. Furthermore, NK cell-mediated killing of myeloma cell lines was dependent on either DNAM-1 or NKG2D but not both molecules. In contrast, the natural cytotoxicity receptor NKp46 was required for the killing of all myeloma cell lines analyzed. Thus, DNAM-1 is important in the NK cell-mediated killing of myeloma cells expressing the cognate ligands. The importance of NKp46, NKG2D, and DNAM-1 in myeloma killing mirrors the differential expression of NK cell ligands by myeloma cells, reflecting immune selection during myeloma disease progression.


Asunto(s)
Antígenos de Diferenciación de Linfocitos T/inmunología , Células Asesinas Naturales/inmunología , Mieloma Múltiple/inmunología , Receptores Inmunológicos/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Diferenciación de Linfocitos T/biosíntesis , Células de la Médula Ósea/inmunología , Citotoxicidad Inmunológica , Humanos , Persona de Mediana Edad , Mieloma Múltiple/patología , Subfamilia K de Receptores Similares a Lectina de Células NK , Receptor 1 Gatillante de la Citotoxidad Natural , Receptores Inmunológicos/biosíntesis , Receptores de Células Asesinas Naturales
19.
Mol Cell Proteomics ; 6(5): 767-80, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17272266

RESUMEN

Natural killer (NK) cells and cytotoxic T lymphocytes eliminate virally infected and transformed cells. Target cell killing is mediated by the regulated exocytosis of secretory lysosomes, which deliver perforin and proapoptotic granzymes to the infected or transformed cell. Yet despite the central role that secretory lysosome exocytosis plays in the immune response to viruses and tumors, little is known about the molecular machinery that regulates the docking and fusion of this organelle with the plasma membrane. To identify potential components of this exocytic machinery we used proteomics to define the protein composition of the NK cell secretory lysosome membrane. Secretory lysosomes were isolated from the NK cell line YTS by subcellular fractionation, integral membrane proteins and membrane-associated proteins were enriched using Triton X-114 and separated by SDS-PAGE, and tryptic peptides were identified by LC ESI-MS/MS. In total 221 proteins were identified unambiguously in the secretory lysosome membrane fraction of which 61% were predicted to be either integral membrane proteins or membrane-associated proteins. A significant proportion of the proteins identified play a role in vesicular trafficking, including members of both the Rab GTPase and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) and protein families. These proteins include Rab27a and the SNARE vesicle-associated membrane protein-7, both of which were enriched in the secretory lysosome fraction and represent potential components of the machinery that regulates the exocytosis of this organelle in NK cells.


Asunto(s)
Exocitosis , Células Asesinas Naturales/química , Lisosomas/química , Proteómica , Línea Celular , Cromatografía Liquida , Células Asesinas Naturales/citología , Proteínas R-SNARE/análisis , Espectrometría de Masa por Ionización de Electrospray , Proteínas de Unión al GTP rab/análisis , Proteínas rab27 de Unión a GTP
20.
Blood ; 107(9): 3665-8, 2006 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-16410452

RESUMEN

Activation of granzyme B, a key cytolytic effector molecule of natural killer (NK) cells, requires removal of an N-terminal pro-domain. In mice, cathepsin C is required for granzyme processing and normal NK cell cytolytic function, whereas in patients with Papillon-Lefèvre syndrome (PLS), loss-of-function mutations in cathepsin C do not affect lymphokine activated killer (LAK) cell function. Here we demonstrate that resting PLS NK cells do have a cytolytic defect and fail to induce the caspase cascade in target cells. NK cells from these patients contain inactive granzyme B, indicating that cathepsin C is required for granzyme B activation in unstimulated human NK cells. However, in vitro activation of PLS NK cells with interleukin-2 restores cytolytic function and granzyme B activity by a cathepsin C-independent mechanism. This is the first documented example of a human mutation affecting granzyme B activity and highlights the importance of cathepsin C in human NK cell function.


Asunto(s)
Catepsina C/metabolismo , Células Asesinas Naturales/enzimología , Células Asesinas Naturales/inmunología , Enfermedad de Papillon-Lefevre/enzimología , Enfermedad de Papillon-Lefevre/inmunología , Serina Endopeptidasas/metabolismo , Animales , Catepsina C/genética , Citotoxicidad Inmunológica , Activación Enzimática , Femenino , Granzimas , Humanos , Técnicas In Vitro , Interleucina-2/farmacología , Células Asesinas Naturales/efectos de los fármacos , Masculino , Ratones , Mutación , Enfermedad de Papillon-Lefevre/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA