Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 786, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30783084

RESUMEN

The transition temperature Tc of unconventional superconductivity is often tunable. For a monolayer of FeSe, for example, the sweet spot is uniquely bound to titanium-oxide substrates. By contrast for La2-xSrxCuO4 thin films, such substrates are sub-optimal and the highest Tc is instead obtained using LaSrAlO4. An outstanding challenge is thus to understand the optimal conditions for superconductivity in thin films: which microscopic parameters drive the change in Tc and how can we tune them? Here we demonstrate, by a combination of x-ray absorption and resonant inelastic x-ray scattering spectroscopy, how the Coulomb and magnetic-exchange interaction of La2CuO4 thin films can be enhanced by compressive strain. Our experiments and theoretical calculations establish that the substrate producing the largest Tc under doping also generates the largest nearest neighbour hopping integral, Coulomb and magnetic-exchange interaction. We hence suggest optimising the parent Mott state as a strategy for enhancing the superconducting transition temperature in cuprates.

2.
Phys Rev Lett ; 118(2): 027202, 2017 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-28128620

RESUMEN

We use resonant elastic and inelastic x-ray scattering at the Ir-L_{3} edge to study the doping-dependent magnetic order, magnetic excitations, and spin-orbit excitons in the electron-doped bilayer iridate (Sr_{1-x}La_{x})_{3}Ir_{2}O_{7} (0≤x≤0.065). With increasing doping x, the three-dimensional long range antiferromagnetic order is gradually suppressed and evolves into a three-dimensional short range order across the insulator-to-metal transition from x=0 to 0.05, followed by a transition to two-dimensional short range order between x=0.05 and 0.065. Because of the interactions between the J_{eff}=1/2 pseudospins and the emergent itinerant electrons, magnetic excitations undergo damping, anisotropic softening, and gap collapse, accompanied by weakly doping-dependent spin-orbit excitons. Therefore, we conclude that electron doping suppresses the magnetic anisotropy and interlayer couplings and drives (Sr_{1-x}La_{x})_{3}Ir_{2}O_{7} into a correlated metallic state with two-dimensional short range antiferromagnetic order. Strong antiferromagnetic fluctuations of the J_{eff}=1/2 moments persist deep in this correlated metallic state, with the magnon gap strongly suppressed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA