Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Opt Express ; 31(9): 14911-14936, 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37157345

RESUMEN

A cloud of very fast, O(km/s), and very fine, O(µm), particles may be ejected when a strong shock impacts and possibly melts the free surface of a solid metal. To quantify these dynamics, this work develops an ultraviolet, long-working distance, two-pulse Digital Holographic Microscopy (DHM) configuration and is the first to replace film recording with digital sensors for this challenging application. A proposed multi-iteration DHM processing algorithm is demonstrated for automated measures of the sizes, velocities, and three-dimensional positions of non-spherical particles. Ejecta as small as 2 µm diameter are successfully tracked, while uncertainty simulations indicate that particle size distributions are accurately quantified for diameters ≥4 µm. These techniques are demonstrated on three explosively driven experiments. Measured ejecta size and velocity statistics are shown to be consistent with prior film-based recording, while also revealing spatial variations in velocities and 3D positions that have yet to be widely investigated. Having eliminated time-consuming analog film processing, the methodologies proposed here are expected to significantly accelerate future experimental investigation of ejecta physics.

2.
Phys Rev E ; 103(4-1): 043105, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34005901

RESUMEN

Evaporation of streams of liquid droplets in environments at vacuum pressures below the vapor pressure has not been widely studied. Here, experiments and simulations are reported that quantify the change in droplet diameter when a steady stream of ≈100 µm diameter drops is injected into a chamber initially evacuated to <10^{-8}bar. In experiments, droplets fall through the center of a 0.8 m long liquid nitrogen cooled shroud, simulating infinity radiation and vapor mass flux boundary conditions. Experimentally measured changes in drop diameters vary from ≈0 to 6 µm when the initial vapor pressure is increased from 10^{-6} to 10^{-3} bar by heating the liquid. Measured diameter changes are predicted by a model based on the Hertz-Knudsen equation. One uncertainty in the calculation is the "sticking coefficient" ß. Assuming a constant ß for all conditions studied here, predicted diameter changes best match measurements with ß≈0.3. This value falls within the range of ß reported in the literature for organic liquids. Finally, at the higher vapor pressure conditions considered here, the drop stream disperses transverse to the main flow direction. This spread is attributed to forces imparted by an absolute pressure gradient produced by the evaporating stream.

3.
Opt Lett ; 44(8): 2101-2104, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30985821

RESUMEN

The separation of liquid phase and vapor phase laser-induced fluorescence (LIF) signals using tracer species suffers from uncertainties in tracer-fuel coevaporation, as well as a disparity in liquid and vapor signals. This work demonstrates the use of a simple technique, referred to as lifetime-filtered LIF, to help separate the liquid and vapor signals of fuel sprays in oxygen-free environments without the use of added tracers. This is demonstrated for a common aviation fuel, Jet-A, using prompt detection of the liquid phase and time-delayed detection of the vapor phase. A scaled liquid signal subtraction algorithm is also demonstrated for removing vapor phase signal contamination caused by the largest droplets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA