Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Qual ; 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256956

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are one of the more well-known highly persistent organic pollutants with potential risks to agroecological systems. These compounds are of global concern due to their persistence and mobility, and they often lead to serious impacts on environmental, agricultural, and human health. In the past 20 years, the number of science publications on PFAS has risen; despite this, certain fundamental questions about PFAS occurrence, sources, mechanism of transport, and impacts on agroecosystems and the societies dependent on them are still open and evolving. There is a lack of systematic and comprehensive analysis of these concerns in agroecosystems. Therefore, we reviewed the current literature on PFAS with a focus on agroecosystems; our review suggests that PFASs are nearly ubiquitous in agricultural systems. We found the current research has limitations in analyzing PFAS in complex matrices because of their small size, distribution, and persistence within various environmental systems. There is consistency in the properties and composition of PFAS in and around agroecosystems, suggesting evidence of shared sources and similar components within different tropic levels. The introduction of new and varied sources of PFAS appear to be growing, adding to their residual accumulation in environmental matrices and leading to possible new types of chemical compounds that are difficult to assess accurately. This review determines existing research trends, understands mechanisms and incidence of PFAS within agroecosystems and their impact on human health, and thereby recommends further studies to remedy research gaps.

2.
Artículo en Inglés | MEDLINE | ID: mdl-34886275

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are highly persistent synthetic organic contaminants that can cause serious human health concerns such as obesity, liver damage, kidney cancer, hypertension, immunotoxicity and other human health issues. Integrated crop-livestock systems combine agricultural crop production with milk and/or meat production and processing. Key sources of PFAS in these systems include firefighting foams near military bases, wastewater sludge and industrial discharge. Per- and polyfluoroalkyl substances regularly move from soils to nearby surface water and/or groundwater because of their high mobility and persistence. Irrigating crops or managing livestock for milk and meat production using adjacent waters can be detrimental to human health. The presence of PFAS in both groundwater and milk have been reported in dairy production states (e.g., Wisconsin and New Mexico) across the United States. Although there is a limit of 70 parts per trillion of PFAS in drinking water by the U.S. EPA, there are not yet regional screening guidelines for conducting risk assessments of livestock watering as well as the soil and plant matrix. This systematic review includes (i) the sources, impacts and challenges of PFAS in integrated crop-livestock systems, (ii) safety measures and protocols for sampling soil, water and plants for determining PFAS concentration in exposed integrated crop-livestock systems and (iii) the assessment, measurement and evaluation of human health risks related to PFAS exposure.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Animales , Exposición a Riesgos Ambientales , Fluorocarburos/análisis , Fluorocarburos/toxicidad , Humanos , Ganado , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 715: 137012, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32041056

RESUMEN

This 2-year (2017 and 2018) field study evaluated biochar and nitrogen application rates effect on herbage phosphorus (P) and nitrogen (N) removal from a mixed-grass sward of tall fescue [Schedonorus arundinaceus (Schreb.) Dumort] and Kentucky bluegrass (Poa pratensis L.) irrigated with treated wastewater. Treatments used in this study carried out at the Main Station Field Laboratory, Reno, NV were three biochar application rates (0, 8.9, and 17.8 Mg/ha), and three N rates (0, 80, and 120 kg N/ha) arranged in a 3 × 3 factorial in a randomized complete block design experiment with four replications of each treatment combination. Responses were considered different P < 0.05. There was a linear increased in soil volumetric water content as biochar rate increased from 0 to 17.9 Mg/ha. However, biochar application rate did not affect the quantity of biomass produced, forage tissue P and N concentrations, P and N removal or interact with the other experimental variables of N rate and year to influence the response variables. There was, however, an N rate effect (P < 0.05) on biomass production and it was greater for the 80 and 120 kg N rate (average = 8.3 Mg DM/ha) relative to the 0 kg N/ha rate (6.0 Mg DM/ha). Further, cumulative P removal for the 80 and 120 kg N rate (average = 48.9 kg/ha) was greater than the 0 kg N/ha rate (38.1 kg/ha), and cumulative N removal was in the order 120 kg N/ha (321.1 kg/ha) > 80 kg N/ha (267.4 kg/ha) > 0 kg N/ha (187.8 kg/ha). There was a trend for a biochar × N rate interaction on soil P concentration and it tended to be greater for the combinations 8.9 and 17.8 Mg/ha biochar rates and 80 and 120 kg N/ha rates compared to the unamended control. Even though our study did not reveal a definitive effect of biochar on the major response parameters (biomass, tissue P and N concentrations) evaluated, the trend for a biochar × N rate interaction on soil P concentration offers hope that biochar-amended soils coupled with appropriate N fertilization will be effective in P retention on agricultural landscapes irrigated with treated wastewater.


Asunto(s)
Carbón Orgánico , Nitrógeno , Fósforo , Poaceae , Suelo , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA