Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Front Microbiol ; 15: 1352666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38784810

RESUMEN

Flow pulses mobilize particulate organic matter (POM) in streams from the surrounding landscape and streambed. This POM serves as a source of energy and nutrients, as well as a means for organismal dispersal, to downstream communities. In the barren terrestrial landscape of the McMurdo Dry Valleys (MDV) of Antarctica, benthic microbial mats occupying different in-stream habitat types are the dominant POM source in the many glacier-fed streams. Many of these streams experience daily flow peaks that mobilize POM, and diatoms recovered from underlying stream sediments suggest that mat-derived diatoms in the POM are retained there through hyporheic exchange. Yet, 'how much' and 'when' different in-stream habitat types contribute to POM diatom assemblages is unknown. To quantify the contribution of different in-stream habitat types to POM diatom assemblages, we collected time-integrated POM samples over four diel experiments, which spanned a gradient of flow conditions over three summers. Diatoms from POM samples were identified, quantified, and compared with dominant habitat types (i.e., benthic 'orange' mats, marginal 'black' mats, and bare sediments). Like bulk POM, diatom cell concentrations followed a clockwise hysteresis pattern with stream discharge over the daily flow cycles, indicating supply limitation. Diatom community analyses showed that different habitat types harbor distinct diatom communities, and mixing models revealed that a substantial proportion of POM diatoms originated from bare sediments during baseflow conditions. Meanwhile, orange and black mats contribute diatoms to POM primarily during daily flow peaks when both cell concentrations and discharge are highest, making mats the most important contributors to POM diatom assemblages at high flows. These observations may help explain the presence of mat-derived diatoms in hyporheic sediments. Our results thus indicate a varying importance of different in-stream habitats to POM generation and export on daily to seasonal timescales, with implications for biogeochemical cycling and the local diatom metacommunity.

3.
Environ Microbiol ; 24(12): 6017-6032, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35860854

RESUMEN

The McMurdo Dry Valleys (MDVs), Antarctica, represent a cold, desert ecosystem poised on the threshold of melting and freezing water. The MDVs have experienced dramatic signs of climatic change, most notably a warm austral summer in 2001-2002 that caused widespread flooding, partial ice cover loss and lake level rise. To understand the impact of these climatic disturbances on lake microbial communities, we simulated lake level rise and ice-cover loss by transplanting dialysis-bagged communities from selected depths to other locations in the water column or to an open water perimeter moat. Bacteria and eukaryote communities residing in the surface waters (5 m) exhibited shifts in community composition when exposed to either disturbance, while microbial communities from below the surface were largely unaffected by the transplant. We also observed an accumulation of labile dissolved organic carbon in the transplanted surface communities. In addition, there were taxa-specific sensitivities: cryptophytes and Actinobacteria were highly sensitive particularly to the moat transplant, while chlorophytes and several bacterial taxa increased in relative abundance or were unaffected. Our results reveal that future climate-driven disturbances will likely undermine the stability and productivity of MDV lake phytoplankton and bacterial communities in the surface waters of this extreme environment.


Asunto(s)
Lagos , Fitoplancton , Ecosistema , Regiones Antárticas , Bacterias/genética , Agua
4.
Ecosphere ; 13(4): e4019, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35573027

RESUMEN

The period of disrupted human activity caused by the COVID-19 pandemic, coined the "anthropause," altered the nature of interactions between humans and ecosystems. It is uncertain how the anthropause has changed ecosystem states, functions, and feedback to human systems through shifts in ecosystem services. Here, we used an existing disturbance framework to propose new investigation pathways for coordinated studies of distributed, long-term social-ecological research to capture effects of the anthropause. Although it is still too early to comprehensively evaluate effects due to pandemic-related delays in data availability and ecological response lags, we detail three case studies that show how long-term data can be used to document and interpret changes in air and water quality and wildlife populations and behavior coinciding with the anthropause. These early findings may guide interpretations of effects of the anthropause as it interacts with other ongoing environmental changes in the future, particularly highlighting the importance of long-term data in separating disturbance impacts from natural variation and long-term trends. Effects of this global disturbance have local to global effects on ecosystems with feedback to social systems that may be detectable at spatial scales captured by nationally to globally distributed research networks.

5.
J Phycol ; 58(1): 36-54, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34817069

RESUMEN

Diatom metacommunities are structured by environmental, historical, and spatial factors that are often attributed to organism dispersal. In the McMurdo Sound region (MSR) of Antarctica, wind connects aquatic habitats through delivery of inorganic and organic matter. We evaluated the dispersal of diatoms in aeolian material and its relation to the regional diatom metacommunity using light microscopy and 18S rRNA high-throughput sequencing. The concentration of diatoms ranged from 0 to 8.76 * 106 valves · g-1 dry aeolian material. Up to 15% of whole cells contained visible protoplasm, indicating that up to 3.43 * 104 potentially viable individuals could be dispersed in a year to a single 2 -cm2 site. Diatom DNA and RNA was detected at each site, reinforcing the likelihood that we observed dispersal of viable diatoms. Of the 50 known morphospecies in the MSR, 72% were identified from aeolian material using microscopy. Aeolian community composition varied primarily by site. Meanwhile, each aeolian community was comprised of morphospecies found in aquatic communities from the same lake basin. These results suggest that aeolian diatom dispersal in the MSR is spatially structured, is predominantly local, and connects local aquatic habitats via a shared species pool. Nonetheless, aeolian community structure was distinct from that of aquatic communities, indicating that intrahabitat dispersal and environmental filtering also underlie diatom metacommunity dynamics. The present study confirms that a large number of diatoms are passively dispersed by wind across a landscape characterized by aeolian processes, integrating the regional flora and contributing to metacommunity structure and landscape connectivity.


Asunto(s)
Diatomeas , Regiones Antárticas , Ecosistema , Lagos , Viento
6.
Front Microbiol ; 12: 709746, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34504481

RESUMEN

Including a multifunctional, bioregenerative algal photobioreactor for simultaneous air revitalization and thermal control may aid in carbon loop closure for long-duration surface habitats. However, using water-based algal media as a cabin heat sink may expose the contained culture to a dynamic, low temperature environment. Including psychrotolerant microalgae, native to these temperature regimes, in the photobioreactor may contribute to system stability. This paper assesses the impact of a cycled temperature environment, reflective of spacecraft thermal loops, to the oxygen provision capability of temperate Chlorella vulgaris and eurythermic Antarctic Chlorophyta. The tested 28-min temperature cycles reflected the internal thermal control loops of the International Space Station (C. vulgaris, 9-27°C; Chlorophyta-Ant, 4-14°C) and included a constant temperature control (10°C). Both sample types of the cycled temperature condition concluded with increased oxygen production rates (C. vulgaris; initial: 0.013 mgO2 L-1, final: 3.15 mgO2 L-1 and Chlorophyta-Ant; initial: 0.653 mgO2 L-1, final: 1.03 mgO2 L-1) and culture growth, suggesting environmental acclimation. Antarctic sample conditions exhibited increases or sustainment of oxygen production rates normalized by biomass dry weight, while both C. vulgaris sample conditions decreased oxygen production per biomass. However, even with the temperature-induced reduction, cycled temperature C. vulgaris had a significantly higher normalized oxygen production rate than Antarctic Chlorophyta. Chlorophyll fluorometry measurements showed that the cycled temperature conditions did not overly stress both sample types (FV/FM: 0.6-0.75), but the Antarctic Chlorophyta sample had significantly higher fluorometry readings than its C. vulgaris counterpart (F = 6.26, P < 0.05). The steady state C. vulgaris condition had significantly lower fluorometry readings than all other conditions (FV/FM: 0.34), suggesting a stressed culture. This study compares the results to similar experiments conducted in steady state or diurnally cycled temperature conditions. Recommendations for surface system implementation are based off the presented results. The preliminary findings imply that both C. vulgaris and Antarctic Chlorophyta can withstand the dynamic temperature environment reflective of a thermal control loop and these data can be used for future design models.

7.
Environ Sci Technol ; 55(21): 14378-14388, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34347463

RESUMEN

In the western USA, one legacy of historic mining is drainage of acidic, metal-rich water generated by exposure to oxygen of sulfide minerals in mine workings, referred to as acid mine drainage (AMD). Streams receiving AMD and natural acid rock drainage (ARD) have a low pH, high dissolved metal concentrations, and extensive streambed oxide deposits. Recently, enhanced ARD generation in the Snake River watershed in the Rocky Mountains has been shown to be associated with warmer summer air temperatures, which has been attributed to expanding weathering fronts that promote oxidation due to earlier drying of shallow soils. In mountain watersheds where complex orogeny disseminated minerals throughout the landscape, weathering processes may also mobilize rare earth elements (REEs). We report that in the Snake River REEs are currently distributed in streams at concentrations ranging from 1 to 100 µg/L. Further, analysis of archived sample indicates that REE increases over time are also associated with increased summer air temperatures. In downstream reaches where the Snake River discharges into a water supply reservoir, colloidal and particulate metal oxides are abundant and sorptive processes may influence REE speciation. We also show that REEs accumulate in benthic invertebrates at concentrations comparable to toxic metals associated with ARD.


Asunto(s)
Metales de Tierras Raras , Contaminantes Químicos del Agua , Biota , Cambio Climático , Colorado , Monitoreo del Ambiente , Metales de Tierras Raras/análisis , Minerales , Contaminantes Químicos del Agua/análisis , Calidad del Agua
8.
Environ Monit Assess ; 193(9): 572, 2021 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-34387759

RESUMEN

Residual pit lakes from mining are often dangerous to sample for water quality. Thus, pit lakes may be rarely (or never) sampled. This study developed new technology in which water-sampling devices, mounted on an unmanned aerial vehicle (UAV), were used to sample three pit lakes in Nevada, USA, during 1 week in 2017. Water-quality datasets from two of the three pit lakes on public lands, Dexter and Clipper, are presented here. The current conditions of the Dexter pit lake were assessed by examining cation and anion concentration changes that have occurred over a 17-year period since the pit lake was last sampled in 2000. Data gathered during this sampling campaign assessed 2017 conditions of the Dexter and Clipper pit lakes by comparing constituent concentrations to the Nevada Division of Environmental Protection (NDEP) pit lake water-quality requirements, indicating that selenium concentrations exceeded regulatory standards. We compared our sampling data for Dexter lake to prior water-quality data from the Dexter pit lake collected in 1999 and 2000. This comparison for the Dexter pit lake indicates that evapoconcentration may have caused increasing cation and anion concentrations. This UAV sampling approach can potentially incorporate the use of additional multiparameter probes: pH, oxygen concentration, turbidity, or chlorophyll. Some limitations of this UAV water-sampling methodology are battery duration, weather conditions, and payload capacity.


Asunto(s)
Lagos , Agua , Monitoreo del Ambiente , Minería , Calidad del Agua
9.
Sci Total Environ ; 615: 1390-1395, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29751443

RESUMEN

It was demonstrated more than two decades ago that microorganisms use humic substances, including fulvic acid (FA), as electron shuttles during iron (Fe) reduction in anaerobic soils and sediments. The relevance of this mechanism for the acceleration of Fe(III) reduction in arsenic-laden groundwater environments is gaining wider attention. Here we provide new evidence that dissolved FAs isolated from sediment-influenced surface water and groundwater in the Bengal Basin were capable of electron shuttling between Geobacter metallireducens and Fe(III). Moreover, all four Bangladesh sediment-derived dissolved FAs investigated in this study had higher electron accepting capacity (176 to 245µmol/g) compared to aquatic FAs, such as Suwanee River Fulvic Acid (67µmol/g). Our direct evidence that Bangladesh FAs are capable of intermediate electron transfer to Fe(III) supports other studies that implicate electron shuttling by sediment-derived aqueous humics to enhance Fe reduction and, in turn, As mobility. Overall, the finding of greater electron accepting capacity by dissolved FAs from groundwater and other sediment-influenced environments advances our understanding of mechanisms that control Fe reduction under conditions where electron transfer is the rate limiting step.


Asunto(s)
Arsénico/química , Benzopiranos/química , Compuestos Férricos/metabolismo , Agua Subterránea/química , Microbiología del Agua , Contaminantes Químicos del Agua/química , Arsénico/análisis , Bangladesh , Biodegradación Ambiental , Electrones , Agua Subterránea/microbiología , Contaminantes Químicos del Agua/análisis
10.
PeerJ ; 6: e4575, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29632744

RESUMEN

Recent advances have allowed for greater investigation into microbial regulation of mercury toxicity in the environment. In wetlands in particular, dissolved organic matter (DOM) may influence methylmercury (MeHg) production both through chemical interactions and through substrate effects on microbiomes. We conducted microcosm experiments in two disparate wetland environments (oligotrophic unvegetated and high-C vegetated sediments) to examine the impacts of plant leachate and inorganic mercury loadings (20 mg/L HgCl2) on microbiomes and MeHg production in the St. Louis River Estuary. Our research reveals the greater relative capacity for mercury methylation in vegetated over unvegetated sediments. Further, our work shows how mercury cycling in oligotrophic unvegetated sediments may be susceptible to DOM inputs in the St. Louis River Estuary: unvegetated microcosms receiving leachate produced substantially more MeHg than unamended microcosms. We also demonstrate (1) changes in microbiome structure towards Clostridia, (2) metagenomic shifts toward fermentation, and (3) degradation of complex DOM; all of which coincide with elevated net MeHg production in unvegetated microcosms receiving leachate. Together, our work shows the influence of wetland vegetation in controlling MeHg production in the Great Lakes region and provides evidence that this may be due to both enhanced microbial activity as well as differences in microbiome composition.

11.
Glob Chang Biol ; 24(8): 3692-3714, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29543363

RESUMEN

Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Animales , Peces , Lagos/química , Ríos/química , Estaciones del Año
12.
Environ Sci Technol ; 52(5): 2649-2657, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29430920

RESUMEN

Over the last several decades dissolved organic carbon concentrations (DOC) in surface waters have increased throughout much of the northern hemisphere. Several hypotheses have been proposed regarding the drivers of this phenomenon including decreased sulfur (S) deposition working via an acidity- change mechanism. Using fluorescence spectroscopy and data from two long-term (24+ years at completion of this study) whole watershed acidification experiments, that is, the Bear Brook Watershed in Maine (BBWM) and Fernow Experimental Forest in West Virginia (FEF) allowed us to control for factors other than the acidity-change mechanism (e.g., differing vegetation, shifting climate), resulting in the first study we are aware of where the acidity change mechanism could be experimentally isolated at the whole ecosystem and decadal scales as the driver of shifts in DOM dynamics. The multidecadal record of stream chemistry at BBWM demonstrates a significantly lower DOC concentration in the treated compared to the reference watershed. Additionally, at both BBWM and FEF we found significant and sustained differences in stream fluorescence index (FI) between the treated and reference watersheds, with the reference watersheds demonstrating a stronger terrestrial DOM signature. These data, coupled with evidence of pH shifts in upper soil horizons support the hypotheses that declines in S deposition are driving changes in the solubility of soil organic matter and increased flux of terrestrial DOC to water bodies.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Carbono , Concentración de Iones de Hidrógeno , Maine , West Virginia
13.
Environ Sci Technol ; 52(2): 722-730, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29185717

RESUMEN

We reassessed the molecular weight of dissolved organic matter (DOM) determined by high pressure size exclusion chromatography (HPSEC) using measurements made with different columns and various generations of polystyrenesulfonate (PSS) molecular weight standards. Molecular weight measurements made with a newer generation HPSEC column and PSS standards from more recent lots are roughly 200 to 400 Da lower than initial measurements made in the early 1990s. These updated numbers match DOM molecular weights measured by colligative methods and fall within a range of values calculated from hydroxyl radical kinetics. These changes suggest improved accuracy of HPSEC molecular weight measurements that we attribute to improved accuracy of PSS standards and changes in the column packing. We also isolated DOM from wetlands in the Prairie Pothole Region (PPR) using XAD-8, a cation exchange resin, and PPL, a styrene-divinylbenzene media, and observed little difference in molecular weight and specific UV absorbance at 280 nm (SUVA280) between the two solid phase extraction resins, suggesting they capture similar DOM moieties. PPR DOM also showed lower SUVA280 at similar weights compared to DOM isolates from a global range of environments, which we attribute to oxidized sulfur in PPR DOM that would increase molecular weight without affecting SUVA280.


Asunto(s)
Radical Hidroxilo , Extracción en Fase Sólida , Cromatografía en Gel , Peso Molecular , Estándares de Referencia
14.
Nat Ecol Evol ; 1(9): 1334-1338, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29046542

RESUMEN

Amplified climate change in polar regions is significantly altering regional ecosystems, yet there are few long-term records documenting these responses. The McMurdo Dry Valleys (MDV) cold desert ecosystem is the largest ice-free area of Antarctica, comprising soils, glaciers, meltwater streams and permanently ice-covered lakes. Multi-decadal records indicate that the MDV exhibited a distinct ecosystem response to an uncharacteristic austral summer and ensuing climatic shift. A decadal summer cooling phase ended in 2002 with intense glacial melt ('flood year')-a step-change in water availability triggering distinct changes in the ecosystem. Before 2002, the ecosystem exhibited synchronous behaviour: declining stream flow, decreasing lake levels, thickening lake ice cover, decreasing primary production in lakes and streams, and diminishing soil secondary production. Since 2002, summer air temperatures and solar flux have been relatively consistent, leading to lake level rise, lake ice thinning and elevated stream flow. Biological responses varied; one stream cyanobacterial mat type immediately increased production, but another stream mat type, soil invertebrates and lake primary productivity responded asynchronously a few years after 2002. This ecosystem response to a climatic anomaly demonstrates differential biological community responses to substantial perturbations, and the mediation of biological responses to climate change by changes in physical ecosystem properties.


Asunto(s)
Cambio Climático , Cianobacterias/fisiología , Ecosistema , Invertebrados/fisiología , Lagos/análisis , Ríos , Animales , Regiones Antárticas , Biota , Estaciones del Año , Factores de Tiempo
15.
FEMS Microbiol Ecol ; 92(10)2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27495241

RESUMEN

Microbial consortia dominate glacial meltwater streams from polar regions, including the McMurdo Dry Valleys (MDV), where they thrive under physiologically stressful conditions. In this study, we examined microbial mat types and sediments found in 12 hydrologically diverse streams to describe the community diversity and composition within and across sites. Sequencing of the 16S rRNA gene from 129 samples revealed ∼24 000 operational taxonomic units (<97% DNA similarity), making streams the most biodiverse habitat in the MDV. Principal coordinate analyses revealed significant but weak clustering by mat type across all streams (ANOSIM R-statistic = 0.28) but stronger clustering within streams (ANOSIM R-statistic from 0.28 to 0.94). Significant relationships (P < 0.05) were found between bacterial diversity and mat ash-free dry mass, suggesting that diversity is related to the hydrologic regimes of the various streams, which are predictive of mat biomass. However, correlations between stream chemistry and community members were weak, possibly reflecting the importance of internal processes and hydrologic conditions. Collectively, these results suggest that localized conditions dictate bacterial community composition of the same mat types and sediments from different streams, and while MDV streams are hotspots of biodiversity in an otherwise depauperate landscape, controls on community structure are complex and site specific.


Asunto(s)
Bacterias/clasificación , Biodiversidad , Consorcios Microbianos , Ríos/microbiología , Regiones Antárticas , Bacterias/genética , ADN Bacteriano/genética , Ecosistema , ARN Ribosómico 16S/genética
16.
PLoS One ; 11(7): e0159038, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27441705

RESUMEN

The McMurdo Dry Valleys constitute the largest ice free area of Antarctica. The area is a polar desert with an annual precipitation of ∼ 3 cm water equivalent, but contains several lakes fed by glacial melt water streams that flow from four to twelve weeks of the year. Over the past ∼20 years, data have been collected on the lakes located in Taylor Valley, Antarctica as part of the McMurdo Dry Valley Long-Term Ecological Research program (MCM-LTER). This work aims to understand the impact of climate variations on the biological processes in all the ecosystem types within Taylor Valley, including the lakes. These lakes are stratified, closed-basin systems and are perennially covered with ice. Each lake contains a variety of planktonic and benthic algae that require nutrients for photosynthesis and growth. The work presented here focuses on Lake Fryxell, one of the three main lakes of Taylor Valley; it is fed by thirteen melt-water streams. We use a functional regression approach to link the physical, chemical, and biological processes within the stream-lake system to evaluate the input of water and nutrients on the biological processes in the lakes. The technique has been shown previously to provide important insights into these Antarctic lacustrine systems where data acquisition is not temporally coherent. We use data on primary production (PPR) and chlorophyll-A (CHL)from Lake Fryxell as well as discharge observations from two streams flowing into the lake. Our findings show an association between both PPR, CHL and stream input.


Asunto(s)
Ecosistema , Hidrología , Lagos , Regiones Antárticas , Clorofila/análisis , Clorofila A , Geografía , Nitrógeno/análisis , Fosfatos/análisis , Análisis de Regresión , Ríos , Solubilidad , Factores de Tiempo
17.
FEMS Microbiol Ecol ; 92(4): fiw049, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26940086

RESUMEN

Microbial mats are abundant in many alpine and polar aquatic ecosystems. With warmer temperatures, new hydrologic pathways are developing in these regions and increasing dissolved nutrient fluxes. In the McMurdo Dry Valleys, thermokarsting may release both nutrients and sediment, and has the potential to influence mats in glacial meltwater streams. To test the role of nutrient inputs on community structure, we created nutrient diffusing substrata (NDS) with agar enriched in N, P and N + P, with controls, and deployed them into two Dry Valley streams. We found N amendments (N and N + P) to have greater chlorophyll-a concentrations, total algal biovolume, more fine filamentous cyanobacteria and a higher proportion of live diatoms than other treatments. Furthermore, N treatments were substantially elevated in Bacteroidetes and the small diatom, Fistulifera pelliculosa. On the other hand, species richness was almost double in P and N + P treatments over others, and coccoid green algae and Proteobacteria were more abundant in both streams. Collectively, these data suggest that nutrients have the potential to stimulate growth and alter community structure in glacial meltwater stream microbial mats, and the recent erosion of permafrost and accelerated glacial melt will likely impact resident biota in polar lotic systems here and elsewhere.


Asunto(s)
Chlorophyta/metabolismo , Cianobacterias/metabolismo , Diatomeas/metabolismo , Nitrógeno/análisis , Fósforo/análisis , Proteobacteria/metabolismo , Regiones Antárticas , Biota , Clorofila/análisis , Clorofila A , Cianobacterias/aislamiento & purificación , Diatomeas/aislamiento & purificación , Ecosistema , Cubierta de Hielo/microbiología , Proteobacteria/aislamiento & purificación , Ríos/microbiología , Temperatura
18.
Proc Natl Acad Sci U S A ; 112(45): 13946-51, 2015 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-26504243

RESUMEN

Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.


Asunto(s)
Ácidos/análisis , Dióxido de Carbono/análisis , Compuestos Orgánicos/análisis , Hielos Perennes , Peso Molecular
19.
Environ Sci Technol ; 49(18): 10815-24, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26192081

RESUMEN

In some high arsenic (As) groundwater systems, correlations are observed between dissolved organic matter (DOM) and As concentrations, but in other systems, such relationships are absent. The role of labile DOM as the main driver of microbial reductive dissolution is not sufficient to explain the variation in DOM-As relationships. Other processes that may also influence As mobility include complexation of As by dissolved humic substances, and competitive sorption and electron shuttling reactions mediated by humics. To evaluate such humic DOM influences, we characterized the optical properties of filtered surface water (n = 10) and groundwater (n = 24) samples spanning an age gradient in Araihazar, Bangladesh. Further, we analyzed large volume fulvic acid (FA) isolates (n = 6) for optical properties, C and N content, and (13)C NMR spectroscopic distribution. Old groundwater (>30 years old) contained primarily sediment-derived DOM and had significantly higher (p < 0.001) dissolved As concentration than groundwater that was younger than 5 years old. Younger groundwater had DOM spectroscopic signatures similar to surface water DOM and characteristic of a sewage pollution influence. Associations between dissolved As, iron (Fe), and FA concentration and fluorescence properties of isolated FA in this field study suggest that aromatic, terrestrially derived FAs promote As-Fe-FA complexation reactions that may enhance As mobility.


Asunto(s)
Arsénico/análisis , Agua Subterránea/análisis , Bangladesh , Fluorescencia , Sedimentos Geológicos/análisis , Agua Subterránea/química , Sustancias Húmicas/análisis , Hierro/química , Espectroscopía de Resonancia Magnética , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
20.
Environ Sci Technol ; 49(7): 4425-32, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25671820

RESUMEN

Organic matter (OM) plays a significant role in biogeochemical processes in soil and water systems. Water-soluble organic matter (WSOM) leached from soil samples is often analyzed as representative of potentially mobile OM. However, there are many WSOM extraction methods in the literature with no clear guidelines for method selection. In this study, four common leaching solutions (0.5 M K2SO4, 0.01 M CaCl2, 2 M KCl, and H2O) were used to extract WSOM from various locations within a forested catchment. Fluorescence spectroscopy was used to analyze the impact of extraction method on WSOM chemistry. While all four methods consistently identified chemical differences between WSOM from a north-facing slope, south-facing slope, and riparian zone, there were clear differences in fluorescence signals between the leaching methods. All three salt solutions contained WSOM with a higher fluorescence index and humification index than WSOM leached with H2O, suggesting the presence of salts releases different fractions of the soil organic matter. A parallel factor analysis (PARAFAC) model developed from the leachates identified a distinctive soil humic fluorophore observed in all samples and fluorescent artifacts present in H2O-leached samples.


Asunto(s)
Cloruro de Calcio/química , Compuestos Orgánicos/química , Cloruro de Potasio/química , Espectrometría de Fluorescencia/métodos , Sulfatos/química , Análisis Factorial , Fluorescencia , Suelo , Soluciones , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA