Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7501, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209828

RESUMEN

Halide solid electrolytes do not currently display ionic conductivities suitable for high-power all-solid-state batteries. We explore the model system A2ZrCl6 (A = Li, Na, Cu, Ag) to understand the fundamental role that A-site chemistry plays on fast ion transport. Having synthesised the previously unknown Ag2ZrCl6 we reveal high room temperature ionic conductivities in Cu2ZrCl6 and Ag2ZrCl6 of 1 × 10-2 and 4 × 10-3 S cm-1, respectively. We introduce the concept that there are inherent limits to ionic conductivity in solids, where the energy and number of transition states play pivotal roles. Transport that involves multiple coordination changes along the pathway suffer from an intrinsic minimum activation energy. At certain lattice sizes, the energies of different coordinations can become equivalent, leading to lower barriers when a pathway involves a single coordination change. Our models provide a deeper understanding into the optimisation and design criteria for halide superionic conductors.

2.
ACS Appl Mater Interfaces ; 16(6): 7171-7181, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38306452

RESUMEN

Layered transition metal oxide cathode materials can exhibit high energy densities in Li-ion batteries, in particular, those with high Ni contents such as LiNiO2. However, the stability of these Ni-rich materials often decreases with increased nickel content, leading to capacity fade and a decrease in the resulting electrochemical performance. Thin alumina coatings have the potential to improve the longevity of LiNiO2 cathodes by providing a protective interface to stabilize the cathode surface. The structures of alumina coatings and the chemistry of the coating-cathode interface are not fully understood and remain the subject of investigation. Greater structural understanding could help to minimize excess coating, maximize conductive pathways, and maintain high capacity and rate capability while improving capacity retention. Here, solid-state nuclear magnetic resonance (NMR) spectroscopy, paired with powder X-ray diffraction and electron microscopy, is used to provide insight into the structures of the Al2O3 coatings on LiNiO2. To do this, we performed a systematic study as a function of coating thickness and used LiCoO2, a diamagnetic model, and the material of interest, LiNiO2. 27Al magic-angle spinning (MAS) NMR spectra acquired for thick 10 wt % coatings on LiCoO2 and LiNiO2 suggest that in both cases, the coatings consist of disordered four- and six-coordinate Al-O environments. However, 27Al MAS NMR spectra acquired for thinner 0.2 wt % coatings on LiCoO2 identify additional phases believed to be LiCo1-xAlxO2 and LiAlO2 at the coating-cathode interface. 6,7Li MAS NMR and T1 measurements suggest that similar mixing takes place near the interface for Al2O3 on LiNiO2. Furthermore, reproducibility studies have been undertaken to investigate the effect of the coating method on the local structure, as well as the role of the substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA