RESUMEN
A novel family of paramagnetic tetranuclear ferrous cubanes is reported. Two complexes from this family are described and their magnetic properties are discussed in relation to their structures.
Asunto(s)
Hidrocarburos/química , Hierro/química , Fenómenos Magnéticos , Compuestos Organometálicos/químicaRESUMEN
Reaction of CuX(2) (X(-)=Cl(-), Br(-), NO(3) (-)), NaOH, and 3[5]-tert-butylpyrazole (Hpz(tBu)) in a 1:1:2 molar ratio in MeOH at 293 K for three days affords [[Cu(3)(Hpz(tBu))(6)(mu(3)-X)(mu(3)-OH)(3)](2)Cu]X(6) (X(-)=Cl(-), 1; X(-)=Br(-), 2; X(-)=NO(3)(-), 3) in moderate yields. These compounds contain a centrosymmetric, vertex-sharing double-cubane [[Cu(3)(Hpz(tBu))(6)(mu(3)-X)(mu(3)-OH)(3)](2)Cu](6+) core, surrounded by a belt of six hydrogen-bonded X(-) ions. For 1 and 2, the ring of guest anions has near C(3) symmetry, that is slightly distorted owing to the axis of Jahn-Teller elongation at the central Cu ion. For 3 only, the NO(3)(-) guest ions are crystallographically disordered, reflecting their poor complimentarity with complex host. A similar reaction employing CuF(2) yields [[Cu(3)(Hpz(tBu))(4)(mu-pz(tBu))(2)(mu-F)(2)(mu(3)-F)](2)]F(2) (4), whose structure contains a cyclic hexacopper core with approximate C(2v) symmetry. Finally, an analogous reaction using Cu(NCS)(2) gives a mixture of trans-[Cu(NCS)(2)(Hpz(tBu))(2)] (5) and [Cu(2)(NCS)(2)(mu-pz(tBu))(2)(mu-Hpz(tBu))(Hpz(tBu))(2)] (6). The latter compound contains a Hpzt(Bu) ligand bridging the two Cu ions in an unusual kappa(1),mu-coordination mode. The variable temperature magnetic properties of 1-3 show antiferromagnetic behavior, leading to a S=1/2 ground state in which the seven copper(II) ions are associated into three mutually independent distinct spin systems. In confirmation of this interpretation, Q-band EPR spectra of solid 1 and 2 at 5 K also demonstrate a S= 1/2 spin system and exhibit hyperfine coupling to three (63,65)Cu nuclei. Unusually, the coupling is manifest as an eight-line splitting of the parallel feature, rather than the usual 10 lines. This has been rationalized by a spin-projection calculation, and results from the relative magnitudes of coupling to the three Cu nuclei. UV/Vis and mass spectrometric data show that 1-4 decompose to lower nuclearity species in solution.