Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Robot ; 6(60): eabl4925, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34731026

RESUMEN

The deep-ocean carbon cycle is poorly quantified. An abyssal benthic rover was developed to make long time-series measurements of seafloor processes related to organic carbon remineralization and sequestration. Benthic Rover II (BR-II) is an autonomous dual-tracked vehicle that measures bottom water temperature and oxygen concentration, current velocity, and sediment community oxygen consumption (SCOC; respiration). BR-II is programmed to transit with low surface-contact pressure across the seafloor, photograph bottom conditions, and stop regularly to occupy respirometer incubation sites, with deployment periods up to 1 year. Now, continuously operational at a 4000-m station in the northeast Pacific over 5 years, substantial weekly, seasonal, annual, and episodic events have been recorded, which are critical to assessing the deep-ocean carbon cycle. There was a significant increase in phytodetritus cover (P < 0.01) arriving on the seafloor from the overlying water column between 2015 and 2020 that was negatively correlated with bottom water dissolved oxygen concentration (P < 0.01). Over the continuous 5-year monitoring period from November 2015 to November 2020, SCOC was positively correlated with phytodetritus cover (P < 0.01) and increased significantly from 2015 to 2020 (P < 0.01). These results show important influences of biological processes on the carbon cycle. The demonstrated success of BR-II now creates opportunities to expand the long-term monitoring of the deep sea to resolve the coupling of water column and benthic processes key to understanding the oceanic carbon cycle on a planet engulfed in a changing climate.

2.
Langmuir ; 24(1): 97-104, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18052215

RESUMEN

The interaction of ammonia molecules with Lewis acid centers (Ti4+ metal ions) of the (011) surface of rutile TiO2 is investigated by density functional theory in order to understand, from first principle, the nature of acid-base reactions on solid surfaces. Unlike the rutile (110) surface that contains alternating rows of 5-fold and 6-fold Ti atoms, all Ti atoms of the (011) surface are 5-fold coordinated. This surface has shown considerable activity for numerous chemical reactions and is thus an ideal prototype. At 1/2 monolayer coverage, with respect to surface Ti atoms, the adsorption energy is found to be equal to 100 kJ mol-1, and drops to 58 kJ mol-1 at one monolayer coverage. Analysis of the electronic density of states (DOS) revealed information regarding the mode of adsorption. In particular, the nitrogen 3a1 and 2a1 orbitals appear to undergo significant changes upon adsorption, in agreement with photoelectron spectroscopy studies. Dissociative adsorption was also investigated on the same surface. Both NH2(Tis) + H(Os) and NH(Tis) + 2H(Os) modes of dissociative adsorption, where s stands for surface, are found to be less stable than the molecular (non dissociated) adsorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA