Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1444621, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170621

RESUMEN

Simian immunodeficiency virus (SIV) vaccines based upon 68-1 Rhesus Cytomegalovirus (RhCMV) vectors show remarkable protection against pathogenic SIVmac239 challenge. Across multiple independent rhesus macaque (RM) challenge studies, nearly 60% of vaccinated RM show early, complete arrest of SIVmac239 replication after effective challenge, whereas the remainder show progressive infection similar to controls. Here, we performed viral sequencing to determine whether the failure to control viral replication in non-protected RMs is associated with the acquisition of viral escape mutations. While low level viral mutations accumulated in all animals by 28 days-post-challenge, which is after the establishment of viral control in protected animals, the dominant circulating virus in virtually all unprotected RMs was nearly identical to the challenge stock, and there was no difference in mutation patterns between this cohort and unvaccinated controls. These data definitively demonstrate that viral mutation does not explain lack of viral control in RMs not protected by RhCMV/SIV vaccination. We further demonstrate that during chronic infection RhCMV/SIV vaccinated RMs do not acquire escape mutation in epitopes targeted by RhCMV/SIV, but instead display mutation in canonical MHC-Ia epitopes similar to unvaccinated RMs. This suggests that after the initial failure of viral control, unconventional T cell responses induced by 68-1 RhCMV/SIV vaccination do not exert strong selective pressure on systemically replicating SIV.


Asunto(s)
Macaca mulatta , Mutación , Vacunas contra el SIDAS , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Vacunas contra el SIDAS/inmunología , Vacunas contra el SIDAS/genética , Citomegalovirus/inmunología , Citomegalovirus/genética , Replicación Viral/inmunología , Vacunación , Evasión Inmune/genética
2.
Bioinformatics ; 38(10): 2791-2801, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35561167

RESUMEN

MOTIVATION: Single-cell sequencing methods provide previously impossible resolution into the transcriptome of individual cells. Cell hashing reduces single-cell sequencing costs by increasing capacity on droplet-based platforms. Cell hashing methods rely on demultiplexing algorithms to accurately classify droplets; however, assumptions underlying these algorithms limit accuracy of demultiplexing, ultimately impacting the quality of single-cell sequencing analyses. RESULTS: We present Bimodal Flexible Fitting (BFF) demultiplexing algorithms BFFcluster and BFFraw, a novel class of algorithms that rely on the single inviolable assumption that barcode count distributions are bimodal. We integrated these and other algorithms into cellhashR, a new R package that provides integrated QC and a single command to execute and compare multiple demultiplexing algorithms. We demonstrate that BFFcluster demultiplexing is both tunable and insensitive to issues with poorly behaved data that can confound other algorithms. Using two well-characterized reference datasets, we demonstrate that demultiplexing with BFF algorithms is accurate and consistent for both well-behaved and poorly behaved input data. AVAILABILITY AND IMPLEMENTATION: cellhashR is available as an R package at https://github.com/BimberLab/cellhashR. cellhashR version 1.0.3 was used for the analyses in this manuscript and is archived on Zenodo at https://www.doi.org/10.5281/zenodo.6402477. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Programas Informáticos , Procesamiento Automatizado de Datos , Análisis de Secuencia , Análisis de la Célula Individual
3.
Proteins ; 88(8): 1070-1081, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31994759

RESUMEN

Comparative docking is based on experimentally determined structures of protein-protein complexes (templates), following the paradigm that proteins with similar sequences and/or structures form similar complexes. Modeling utilizing structure similarity of target monomers to template complexes significantly expands structural coverage of the interactome. Template-based docking by structure alignment can be performed for the entire structures or by aligning targets to the bound interfaces of the experimentally determined complexes. Systematic benchmarking of docking protocols based on full and interface structure alignment showed that both protocols perform similarly, with top 1 docking success rate 26%. However, in terms of the models' quality, the interface-based docking performed marginally better. The interface-based docking is preferable when one would suspect a significant conformational change in the full protein structure upon binding, for example, a rearrangement of the domains in multidomain proteins. Importantly, if the same structure is selected as the top template by both full and interface alignment, the docking success rate increases 2-fold for both top 1 and top 10 predictions. Matching structural annotations of the target and template proteins for template detection, as a computationally less expensive alternative to structural alignment, did not improve the docking performance. Sophisticated remote sequence homology detection added templates to the pool of those identified by structure-based alignment, suggesting that for practical docking, the combination of the structure alignment protocols and the remote sequence homology detection may be useful in order to avoid potential flaws in generation of the structural templates library.


Asunto(s)
Simulación del Acoplamiento Molecular , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Animales , Benchmarking , Sitios de Unión , Perros , Escherichia coli/química , Humanos , Ligandos , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína , Termodinámica
4.
Comput Biol Chem ; 74: 286-293, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29698920

RESUMEN

DNA interacts with small molecules, from water to endogenous reactive oxygen and nitrogen species, environmental mutagens and carcinogens, and pharmaceutical anticancer molecules. Understanding and predicting the physical interactions of small molecules with DNA via docking is key not only for the comprehension of molecular-level events that lead to carcinogenesis and other diseases, but also for the rational design of drugs that target DNA. We recently validated AutoDock, a popular docking method that includes a physics-based scoring function and a Lamarckian Genetic Algorithm, for the prediction of small molecule geometries upon physical binding to DNA. In this work, we added a vibrational entropy term based on the docking frequency to the scoring function in order to improve the accuracy of the best (lowest) score geometry. We found that in four small molecule-DNA systems the inclusion of the vibrational entropy term decreased the root-mean-square-deviation from the experimental crystallographic structure. Including the entropy term also preserved the successful prediction of the binding geometry compared to the crystallographic structure for the rest of the small molecule-DNA systems. We also improved the method of creating clusters of docking geometries and emphasized the importance of the length of the search process for similar vibrational entropy terms.


Asunto(s)
ADN/química , Entropía , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/química , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA