Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Vet Sci ; 11: 1394484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39139607

RESUMEN

Introduction: Prolificacy has become an important breeding goal in sheep farming to increase farm profitability. With the adoption of improved genetics and management practices leading to increased lambing percentages, the proportion of triplet-born lambs has also increased on farms. However, mortality rates of triplet lambs are higher than for single- and twin-born lambs, and additional management inputs may be needed to support survival. The aim of this study was to identify factors that affect management practices that are considered important for triplet lamb survival by commercial farmers from the United Kingdom (UK), the Ireland (IRE), and New Zealand (NZ). Methods: An online survey was developed and disseminated to farmers in each country, focusing on farmer demographics, flock characteristics, management practices and production outcomes. A total of 448 farmers completed the survey, from the UK (n = 168), IRE (n = 218), and NZ (n = 62). Results: Respondents had larger flocks, higher scanning and lambing percentages than the country average for the UK and IRE. The mean percentage of triplet litters born within flocks was 9%, and lambs lost between scanning and lambing were 14% for UK, 15% for IRE, and 25% for NZ respondents (P = 0.063). Overall, 60% of all respondents reported to lamb indoors and 40% lambed outdoors, however NZ farmers almost exclusively lambed outdoors, whereas UK and IRE farmers lambed in both systems (P < 0.001). NZ farmers were more likely to rear all triplet lambs with the ewe, whereas UK and IRE farmers were more likely to remove a lamb to rear by another ewe or artificially (P < 0.001). Factors that influenced triplet lamb management practices of respondents in this study were respondent country of origin, flock size, age, and gender. In general, younger respondents (P < 0.001), and female respondents (P < 0.05), were more likely to engage in management activities that were considered to promote better triplet lamb survival, compared to older and male respondents respectively. These practices were associated with better lamb survival reported by respondents but were less likely to be carried out when flock size increased (P < 0.001). Discussion: The results of this survey highlight future priorities or communication strategies needed to improve triplet lamb survival.

2.
Animals (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731298

RESUMEN

Placental nutrient transport capacity influences fetal growth and development; however, it is affected by environmental factors, which are poorly understood. The objective of this study was to understand the impact of the ovine placentome morphological subtype, tissue type, and maternal parenteral supplementation of arginine mono-hydrochloride (Arg) on nutrient transport capacity using a gene expression approach. Placentomal tissues of types A, B, and C morphologic placentome subtypes were derived from 20 twin-bearing ewes, which were infused thrice daily with Arg (n = 9) or saline (Ctrl, n = 11) from 100 to 140 days of gestation. Samples were collected at day 140 of gestation. Expression of 31 genes involved in placental nutrient transport and function was investigated. Differential expression of specific amino acid transporter genes was found in the subtypes, suggesting a potential adaptive response to increase the transport capacity. Placentomal tissues differed in gene expression, highlighting differential transport capacity. Supplementation with Arg was associated with differential expressions of genes involved in amino acid transport and angiogenesis, suggesting a greater nutrient transport capacity. Collectively, these results indicate that the morphological subtype, tissue type, and maternal Arg supplementation can influence placental gene expression, which may be an adaptive response to alter the transport capacity to support fetal growth in sheep.

3.
Front Microbiol ; 12: 711040, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745024

RESUMEN

The objective of this study was to determine whether divergent feeding regimes during the first 41 weeks of the life of a calf are associated with long-term changes in the rumen microbiota and the associated fermentation end-products. Twenty-four calves (9 ± 5 days of age) were arranged in a 2 × 2 factorial design with two divergent treatments across three dietary phases. In phase 1 (P01), calves were offered a low-milk volume/concentrate starter diet with early weaning (CO) or high-milk volume/pasture diet and late weaning (FO). In phase 2 (P02), calves from both groups were randomly allocated to either high-quality (HQ) or low-quality (LQ) pasture grazing groups. In phase 3 (P03), calves were randomly allocated to one of two grazing groups and offered the same pasture-only diet. During each dietary phase, methane (CH4) and hydrogen (H2) emissions and dry matter intake (DMI) were measured in respiration chambers, and rumen samples for the evaluation of microbiota and short-chain fatty acid (SCFA) characterizations were collected. In P01, CO calves had a higher solid feed intake but a lower CH4 yield (yCH4) and acetate:propionate ratio (A:P) compared with FO calves. The ruminal bacterial community had lower proportions of cellulolytic bacteria in CO than FO calves. The archaeal community was dominated by Methanobrevibacter boviskoreani in CO calves and by Mbb. gottschalkii in FO calves. These differences, however, did not persist into P02. Calves offered HQ pastures had greater DMI and lower A:P ratio than calves offered LQ pastures, but yCH4 was similar between groups. The cellulolytic bacteria had lower proportions in HQ than LQ calves. In all groups, the archaeal community was dominated by Mbb. gottschalkii. No treatment interactions were observed in P02. In P03, all calves had similar DMI, CH4 and H2 emissions, SCFA proportions, and microbial compositions, and no interactions with previous treatments were observed. These results indicate that the rumen microbiota and associated fermentation end-products are driven by the diet consumed at the time of sampling and that previous dietary interventions do not lead to a detectable long-term microbial imprint or changes in rumen function.

4.
J Anim Sci ; 98(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31768520

RESUMEN

AbstractThis study evaluated the effect of early weaning (EW) of artificially reared lambs using a restricted milk replacer (MR) feeding and step-down weaning system on the short- and long-term effects on growth, feed intake, selected blood metabolites and hormones, body composition, and small intestine development. Mixed-sex twin-born 2 to 5 d old lambs were randomly allocated to individual pens and fed MR at 20% of initial individual BW in week 1 and 15% in week 2 followed by weaning off MR by the end of week 4 (EW; n = 16) or week 6 (Control; Ctrl, n = 16) using a step-down procedure. Concentrate starter and fiber diets were offered ad libitum to week 9, then gradually removed over a 10-d period. All lambs were managed as a single group on pasture from weeks 6 to 16 of the trial. Feed intake was recorded daily in the first 6 wk, and BWs recorded weekly. At weeks 2, 4, 6, and 8, and pre- and postclostridial vaccination at week 8, blood samples were collected for analysis of selected blood metabolites, IGF-1, and immune function. Body composition was evaluated in eight animals per group at weeks 4 and 16 after euthanasia, and duodenal samples collected for histomorphometric evaluation. Early weaned lambs had lower DM, ME, CP, and NDF intake than Ctrl lambs at 21, 15, 21, and 36 d of rearing, respectively (P < 0.001), driven by lower intakes of MR from day 15 (P < 0.001) as per the experimental design, and lower total DMI of fiber (P = 0.001) from 21 to 42 d of rearing. Lamb BW tended (P = 0.097) to be lower in EW than Ctrl lambs from 5 to 10 wk of rearing, with lower ADG in EW lambs from weeks 3 to 6 (P = 0.041). Early weaning had negligible effects on duodenal morphology, organ, and carcass weights at weeks 4 and 16. Plasma metabolites (urea nitrogen, triglycerides, NEFA, glucose, and total protein) were similar between groups, while ß-hydroxybutyrate was greater in EW than Ctrl lambs at weeks 4 and 6 (P = 0.018) but not week 8 indicative of early rumen development. Serum IGF-1 tended to be lower in EW than Ctrl lambs from weeks 2 to 6 only (P = 0.065). All lambs developed antibody responses postvaccination and there was no effect of treatment (P = 0.528). The results of this study illustrate that artificially reared lambs can be weaned off MR by 4 or 6 wk of rearing without compromising growth, small intestine morphology, major organ development, and body composition, nor immune function at either 4 (preweaning) or 16 (postweaning) wk of age.


Asunto(s)
Ingestión de Alimentos , Ovinos/fisiología , Ácido 3-Hidroxibutírico/sangre , Animales , Nitrógeno de la Urea Sanguínea , Composición Corporal , Sistema Endocrino/crecimiento & desarrollo , Femenino , Intestino Delgado/crecimiento & desarrollo , Masculino , Distribución Aleatoria , Rumen/crecimiento & desarrollo , Ovinos/crecimiento & desarrollo , Ovinos/inmunología , Destete
5.
Antioxidants (Basel) ; 8(3)2019 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-30857206

RESUMEN

Twinning and maternal nutritional restriction leads to fetal hypoxia, oxidative stress, and intrauterine growth restriction (IUGR) in near-term sheep pregnancies. Our aim was to determine the effect of oral supplementation of vitamins C and E in pregnant sheep on maternal and umbilical cord blood concentrations of vitamins C and E and the effects on fetal antioxidant status, growth, and placental efficiency. Sixteen single- and sixteen twin-bearing ewes, grazing natural Patagonian prairies, were selected after transrectal ultrasound at day 30 after mating. Half of ewes from each pregnancy rank were supplemented daily with vitamins C and E, administered orally, from 30 to 140 days of gestation, when maternal jugular and fetal venous cord blood samples were obtained during cesarean section. Fetuses were weighed and sexed. Placental weight in each fetus was also obtained. Blood plasma was harvested for measurements of maternal and fetal vitamins concentration and fetal antioxidant capacity. Maternal administration of vitamin C and E was associated with increased fetal cord levels of both vitamins, improved antioxidant status, and enhanced fetal growth in both singleton and twin pregnancies associated with increased placental efficiency. These results highlight the potential of vitamin C and E supplementation to reduce the impact of IUGR in both livestock and humans.

6.
J Anim Sci ; 97(2): 839-845, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452689

RESUMEN

Fetal hypoxia, resulting in oxidative stress in pregnancies, contributes to reduced fetal growth. Melatonin, a potent antioxidant, has been associated with improved oxidative status. Maternal oral melatonin supplementation in sheep from day 50 of gestation ameliorates the consequences of fetal growth restriction in sheep. In rats, melatonin supplementation increases fetal weight via improved placental efficiency and reduction of oxidative stress. The objective of this study was to evaluate whether melatonin supplementation of single (S)- or twin-bearing (T) ewes using either 0 (0MEL), 1 (18-mg MEL), or 2 (36-mg MEL) slow release 18-mg melatonin implants (Regulin) from 100 to 140 d of pregnancy (n = 8 per group) influenced fetal oxygen supply and fetal weight. Fetal umbilical vein blood samples were collected at P140 and partial pressure of oxygen (PO2) and hemoglobin saturation by oxygen (SatHb) measured. The placenta from each fetus was excised and placentomes individually weighed and typed (A-D). Pregnancy rank, sex of the fetus, number of implants, and their interaction on fetal weight, blood gases, and placentome weight were analyzed using ANOVA. A 22% and 14% increase (P < 0.05) in body weight was obtained in 36- and 18-mg MEL compared with 0 MEL twin male fetuses, respectively, but no treatment effects were observed in singletons or females from twin pregnancies. Fetuses from ewes receiving 36-mg MEL had an 18% to 20% increase in cord PO2 (P < 0.05) compared with 18-mg MEL and 0MEL fetuses, which in turn did not differ. Fetal weight was positively correlated with PO2 (r = 0.37; P = 0.02), SatHb (r = 0.26; P = 0.03), and O2 content (r = 0.236; P = 0.048). No treatment effect on placentome average weight, total placentome weight per fetus or per ewe, nor total number of placentomes per fetus was observed. However, placentae from 36-mg MEL fetuses had a greater proportion of Type C (P < 0.05) than 0MEL and 18-mg MEL ewes, and tended to have a lower proportion of Type A (P = 0.1) and a greater proportion of Type D (P = 0.06) placentomes, compared with 0MEL ewes. These results indicate that maternal melatonin implants, independently of sex, improve oxygen supply to the fetus, which could potentially improve lamb vigor at birth. In addition, melatonin can increase fetal weight of twin males, by improving placental adaptation and fetal blood oxygenation.


Asunto(s)
Peso al Nacer/efectos de los fármacos , Melatonina/farmacología , Oxígeno , Ovinos/fisiología , Animales , Animales Recién Nacidos , Antioxidantes/farmacología , Implantes de Medicamentos , Femenino , Desarrollo Fetal , Masculino , Melatonina/administración & dosificación , Placenta/efectos de los fármacos , Embarazo
7.
Animals (Basel) ; 8(11)2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30463237

RESUMEN

Low birth weight has profound implications for perinatal mortality and morbidity in lambs, causing higher mortality and lower growth potential. Low birth weight, as a consequence of fetal growth restriction, occurs in undernourished and multiple pregnancies, where hypoxia and oxidative stress could play a critical role. Our aim was to establish the effects of nutritional deprivation and pregnancy rank on fetal growth, oxygenation, and oxidative status in sheep pregnancies under extensive Patagonian conditions. At 30 days after mating, single- and twin-bearing ewes were offered only natural pasture (undernutrition group) or natural pasture plus concentrate supplementation (well-nourished group). At day 140 of gestation, blood gases and redox status were evaluated in venous cord blood, and fetal biometric characteristics were obtained after cesarean section. Both maternal undernutrition and twinning led to decreased oxygen supply to the fetuses (p = 0.016 and p = 0.050, respectively), which was associated with decreased intrauterine growth (r = 0.446, p < 0.01). Moreover, twinning increased oxidative stress in cord blood (p < 0.05), which might also contribute to fetal growth restriction. These results reinforce the importance of maternal nutrition, especially for those ewes bearing multiples, and opens new possibilities for nutritional or antioxidant interventions for preventing fetal hypoxia and oxidative stress.

8.
Springerplus ; 2: 483, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24133643

RESUMEN

Twin sheep fetuses have reduced skeletal muscle weight near birth relative to singles as a result of restricted muscle hypertrophy. Intracellular free amino acids (FAA) are reported to regulate metabolic pathways which control muscle protein accretion, whereby reduced intracellular content of specific FAA may reduce their activation and therefore, muscle hypertrophy. The aim of this study was to determine whether differences in muscle weight between singleton and twin fetuses, under different maternal conditions is associated with reduced concentration of specific FAA. The FAA content in the semitendinosus muscle (ST) in singleton and twin fetuses (rank) at 140 days of gestation from heavy (H) or light (L) ewes fed ad libitum (A) or maintenance (M) level of nutrition was measured. Muscle weight was reduced in twin fetuses compared to singletons in all groups. Reduced concentrations of leucine, threonine and valine, but higher concentrations of methionine, ornithine, lysine and serine were found in twin fetuses compared to singletons. Maternal size and nutrition interaction with rank resulted in reduced glutamine in twins from HM-ewes (H-ewes under M nutrition) compared to their singleton counterparts. Maternal weight interaction with pregnancy rank reduced the concentration of arginine in twins, with a larger effect on H-ewes compared with L-ewes. Maternal size interaction with pregnancy rank resulted in twins from M-ewes to have lower alanine, while twins from A-ewes had lower aspartic acid concentration compared to singletons. The ST muscle weight was positively correlated only with arginine concentration after taking into account rank, size and nutrition. The present results indicate that reduced concentrations of specific intracellular FAA, such as arginine, leucine, valine, glutamine, which are known to play a role in muscle growth, could be acting as limiting factors for muscle hypertrophy in twin fetuses during late gestation. Ewe size and nutrition can influence the concentration of specific FAA in muscle and should be considered in any intervention plan to improve twin fetal muscle growth.

9.
Springerplus ; 2: 684, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24422179

RESUMEN

The objective of this study was to evaluate the effects of parenteral administration of L-arginine (Arg) to well-fed twin-bearing ewes from day (d) 100 of pregnancy to birth on fetal growth, body composition and neonatal behavior. Ewes received an i.v. bolus of either 345 µmol Arg-HCl/kg bodyweight or saline solution (control) 3 times a day. At d 140 of pregnancy, Arg-supplemented and control ewes were euthanized and fetal weight and fetal organ weight recorded, and maternal and fetal plasma concentrations of amino acids, hormones and metabolites analyzed. A subset of ewes was allowed to lamb and birth weight, body dimensions and behavior of the lambs in the first 2 hours(h) following birth recorded and blood samples collected. At d 140 of pregnancy, fetal weight internal organ weights were unaffected by treatment with the exception of brown fat stores which were increased by 16% in fetuses from Arg-supplemented ewes relative to controls (P < 0.05). At birth, there was an interaction (P = 0.06) between treatment and sex for birth weight of the lamb. The ewe lambs from Arg-supplemented ewes were 12% (P < 0.05) heavier at birth compared with controls whereas birth weight of male lambs did not differ. These results indicate that maternal Arg supplementation enhanced brown fat stores in the fetus and countered some effect of fetal growth restriction due to litter size in female lambs. Increasing birth weight of female lambs and enhancing brown fat stores of all lambs may have important implications for lamb survival and postnatal growth.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA