Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 783: 147052, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34088137

RESUMEN

This study describes a multivariate statistical model (derived using partial least squares regression, PLS-R) that derives charring intensity (reaction temperature and duration) from the attenuated total reflectance (ATR) Fourier Transform Infrared (FTIR) spectra of charcoal. Data for the model was obtained from a library of charcoal samples produced under laboratory conditions at charring intensities (CI) relevant to wildfires and a series of feedstocks representing common tree species collected from Australia. The PLS-R model developed reveals the potential of FTIR to determine the charring intensity of charcoal. Though limited by the differences between laboratory-produced charcoal and the more heterogeneous and less-structured charcoal produced in a wildfire, the method was tested against fossil charcoal from a well-dated sediment core collected from Thirlmere Lakes National Park, Australia and showed a distinct change in CI that can be related to other climatic and environmental proxies. We suggest that the method has the potential to offer insights into the conditions under which natural charcoal is formed including the modelling of charring intensities of fossil charcoal samples isolated from sediments, archaeological applications or characterisation of contemporary fire events from charcoal in soils.

2.
Sci Total Environ ; 713: 136431, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31958720

RESUMEN

Biochar-based compound fertilizers (BCF) and amendments have proven to enhance crop yields and modify soil properties (pH, nutrients, organic matter, structure etc.) and are now in commercial production in China. While there is a good understanding of the changes in soil properties following biochar addition, the interactions within the rhizosphere remain largely unstudied, with benefits to yield observed beyond the changes in soil properties alone. We investigated the rhizosphere interactions following the addition of an activated wheat straw BCF at an application rates of 0.25% (g·g-1 soil), which could potentially explain the increase of plant biomass (by 67%), herbage N (by 40%) and P (by 46%) uptake in the rice plants grown in the BCF-treated soil, compared to the rice plants grown in the soil with conventional fertilizer alone. Examination of the roots revealed that micron and submicron-sized biochar were embedded in the plaque layer. BCF increased soil Eh by 85 mV and increased the potential difference between the rhizosphere soil and the root membrane by 65 mV. This increased potential difference lowered the free energy required for root nutrient accumulation, potentially explaining greater plant nutrient content and biomass. We also demonstrate an increased abundance of plant-growth promoting bacteria and fungi in the rhizosphere. We suggest that the redox properties of the biochar cause major changes in electron status of rhizosphere soils that drive the observed agronomic benefits.


Asunto(s)
Carbón Orgánico , Fertilizantes , Oryza , Biomasa , China , Potenciales de la Membrana , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA