Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Technol ; : 1-14, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38403904

RESUMEN

Due to its important role in the formation of humic acids (HA), improving lignin degradation during composting has usually been considered a challenge. One practice that could stimulate the biodegradation of this recalcitrant molecule is inoculation with exogenous lignolytic fungal strains. Two composts (C1) and (C2) from piles (H1) and (H2) were evaluated. H1 was the control pile and H2 was inoculated at maturity with Trametes trogii, resulting in a 35% increase in lignin degradation rate compared to H1. The aim of this study was to show the main effects of this increase on the humification process in the co-composting of green waste, coffee grounds and olive mill wastewater sludge (OMWWs). Microstructure of HA1 and HA2 extracted from C1 and C2, respectively, was also investigated by scanning electron microscopy (SEM) and SEM coupled with energy-dispersive X-ray spectroscopy (X-EDS). The results showed that there were several similarities between the compost samples tested. These included the mineral content, the degree of polymerization (PD)> 1 and the compact and rigid surface of the extracted HA. However, C2 was characterized by a higher humic content (HC), degree of polymerization (PD), humification index (HI) and percentage of humic acids (PHA) than C1. Carbon-13 nuclear magnetic resonance (13C-NMR) and Fourier transmission-infrared spectroscopy (FTIR) analysis showed that aliphatic groups such as hydroxyls, alcohols and carboxyls were predominant in both composts. SEM analysis in conjunction with X-EDS analysis of HA2 showed a higher proportion of carbon and potassium (18 and 7.93%) than in HA1 (14 and 0.95%).

2.
Environ Technol ; 42(5): 731-742, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31304884

RESUMEN

Aerobic biodegradation of biocomposites has been studied in both solid and liquid media. The research was concentrated on the biodegradation under aerobic and mesophilic conditions using poly-d-lactic acid (PDLA) and PDLA/cellulose microfibres (CMFs) samples as the sole carbon source. To determine the efficiency of the biodegradation, quantitative (mass variations, optical density (OD)) and qualitative (FTIR, NMR and SEM) analyses have been used to follow the polymer changes after degradation. The weight loss and OD of the biocomposites samples PDLA/CMFs were slower than that of pristine PDLA. The PDLA displayed the most important loss of weight (7.09%, 8.95%) compared to its initial weight and the lowest weight loss was detected in PDLA/CMF300 (1.04%, 2.19%) in solid and liquid mediums respectively. Also, the OD value of PDLA was increased from the seven days (0.381) to the last day (0.969). It appears that the major rate-determining factor affecting material degradation was its crystallinity without or with minimal assistance from abiotic factor because crystalline phases inhibit the diffusion of small water molecules. Otherwise, the Pseudomonas aeruginosa was isolated from Mediterranean soil has been found to be a novel candidate to biodegrade PDLA under mesophilic conditions.


Asunto(s)
Celulosa , Pseudomonas aeruginosa , Biodegradación Ambiental , Ácido Láctico , Polímeros
3.
Ultrason Sonochem ; 48: 517-522, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30080580

RESUMEN

The current research work aimed to describe the roles of ultrasonic power under sono-Fenton process in the degradation of flumequine (FLU) in water. For this purpose, the effects of some parameters including temperature, ferrous ion concentration, chemical oxidant concentration (S2O82- and Cl-) and the initial pH value of the reaction kinetics were investigated. Results showed that the degradation of FLU antibiotic was accelerated by ultrasonic irradiation and the presence of an inorganic oxidant. The sono-generation of active species such as hydroxyl radicals (HO and HOO) and sulfate radicals (SO4-) as strong oxidizing agents improved the FLU degradation. In fact, the peroxydisulfate anion (S2O82-) has been identified as among parameters that enhanced the degradation process. Under optimal conditions, 98% of the flumequine removal was carried out within 80 min at 60 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA