Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biofilm ; 5: 100132, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37346320

RESUMEN

The water systems inside a dental unit are known to be contaminated with a multi-kingdom biofilm encompassing bacteria, fungi, viruses and protozoa. Aerosolization of these micro-organisms can potentially create a health hazard for both dental staff and the patient. Very little is known on the efficacy of dental unit disinfection products against amoeba. In this study we have examined the effect of four different treatment regimens, with the hydrogen peroxide (H2O2) containing product Oxygenal, on an in-vitro multi-kingdom dental unit water system (DUWS) biofilm. The treatment efficacy was assessed in time using heterotrophic plate counts, the bacterial 16S rDNA, fungal 18S rDNA gene load and the number of genomic units for Legionella spp. the amoeba Vermamoeba vermiformis. The results indicated that a daily treatment of the DUWS with a low dose H2O2 (0.02% for 5 h), combined with a weekly shock dose (0.25% H2O2, 30 min) is necessary to reduce the heterotrophic plate count of a severely contaminated DUWS (>106 CFU.mL-1) to below 100 CFU.mL-1. A daily treatment with a low dose hydrogen peroxide alone, is sufficient for the statistically significant reduction of the total amount of bacterial 16S rDNA gene, Legionella spp. and Vermamoeba vermiformis load (p < 0.005). Also shown is that even though hydrogen peroxide does not kill the trophozoite nor the cysts of V. vermiformis, it does however result in the detachment of the trophozoite form of this amoeba from the DUWS biofilm and hereby ultimately removing the amoeba from the system.

2.
NPJ Biofilms Microbiomes ; 9(1): 40, 2023 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330520

RESUMEN

A few studies indicate that nitrate can reduce dysbiosis from a periodontitis point of view. However, these experiments were performed on samples from healthy individuals, and it is unknown if nitrate will be effective in periodontal patients, where the presence of nitrate-reducing bacteria is clearly reduced. The aim of this study was to test the effect of nitrate and a nitrate-reducing R. aeria (Ra9) on subgingival biofilms of patients with periodontitis. For this, subgingival plaque was incubated with 5 mM nitrate for 7 h (n = 20) or 50 mM nitrate for 12 h (n = 10), achieving a ~50% of nitrate reduction in each case. Additionally, Ra9 was combined with 5 mM nitrate (n = 11), increasing the nitrate reduced and nitrite produced (both p < 0.05). The addition of nitrate to periodontitis communities decreased biofilm mass (50 mM > 5 mM, both p < 0.05). Five millimolar nitrate, 50 mM nitrate and 5 mM nitrate + Ra9 led to 3, 28 and 20 significant changes in species abundance, respectively, which were mostly decreases in periodontitis-associated species. These changes led to a respective 15%, 63% (both p < 0.05) and 6% (not significant) decrease in the dysbiosis index. Using a 10-species biofilm model, decreases in periodontitis-associated species in the presence of nitrate were confirmed by qPCR (all p < 0.05). In conclusion, nitrate metabolism can reduce dysbiosis and biofilm growth of periodontitis communities. Five millimolar nitrate (which can be found in saliva after vegetable intake) was sufficient, while increasing this concentration to 50 mM (which could be achieved by topical applications such as a periodontal gel) increased the positive effects. Ra9 increased the nitrate metabolism of periodontitis communities and should be tested in vivo.


Asunto(s)
Periodontitis , Simbióticos , Humanos , Nitratos , Prebióticos , Disbiosis , Periodontitis/tratamiento farmacológico , Periodontitis/microbiología
3.
Phytother Res ; 35(11): 5980-5991, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34216058

RESUMEN

This study aims to evaluate the clinical efficacy of curcumin versus chlorhexidine as adjuncts to scaling and root planing (SRP) for periodontitis treatment. We searched PubMed, EMbase, Cochrane Library, and ClinicalTrials.gov from inception to February 18, 2021 and identified studies with relevant randomized controlled trials (RCTs) using curcumin or chlorhexidine as an adjunct to SRP. Nine RCTs involving 420 patients/sites were included. A meta-analysis with a random-effects model revealed that curcumin and chlorhexidine, as an adjunct to SRP, reduced probing pocket depth (PPD) at similar levels during a 3-, 4-, 6-, and 12-week follow-up. No significant differences were observed in reducing clinical attachment loss (CAL) between curcumin and chlorhexidine as an adjunct to SRP at 4 weeks and 6 weeks. Furthermore, gingival index (GI) and plaque index (PI) were similar using curcumin versus chlorhexidine as an adjunct to SRP at the 4-week-, 6-week-, and 12-week follow-up. Based on the available evidence in RCTs, compared with chlorhexidine as an adjunct to SRP, curcumin has a similar effect on reducing PPD, CAL, GI, and PI. The quality of evidence is low, limited by the number of studies and their limitations. Further studies are needed to firmly establish the clinical efficacy of curcumin.


Asunto(s)
Antiinfecciosos Locales , Periodontitis Crónica , Curcumina , Clorhexidina , Curcumina/uso terapéutico , Humanos , Aplanamiento de la Raíz , Resultado del Tratamiento
4.
BMC Microbiol ; 20(1): 184, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32600259

RESUMEN

BACKGROUND: Regular consumption of xylitol decreases the number of cariogenic streptococci in dental plaque. In vitro biofilm models to study the mechanism of xylitol action have been set-up, but the obtained results are contradictory. Biofilm growth is a dynamic process with time-specific characteristics that may remain undetected in conventional end-point biofilm tests. In this study we used an impedance spectroscopy instrument, xCELLigence Real Time Cell Analyzer (RTCA), that allows label-free, non-invasive real-time monitoring of biofilm formation, to explore effects of xylitol on biofilm formation by Streptococcus mutans. Based on the obtained information of biofilm dynamics, we assessed the number of viable bacteria, the polysaccharide content, and the expression levels of selected genes involved in glucan-mediated biofilm formation in different biofilm stages. Xylitol inhibition was compared with that of erythritol; another polyol suggested to have a positive impact on oral health. RESULTS: Our results showed that real-time monitoring provided new information of polyol-induced changes in S. mutans biofilm formation dynamics. The inhibitory effect of polyols was more pronounced in the early stages of biofilm formation but affected also the measured total amount of formed biofilm. Effects seen in the real-time biofilm assay were only partially explained by changes in CFU values and polysaccharide amounts in the biofilms. Both xylitol and erythritol inhibited real-time biofilm formation by all the nine tested S. mutans strains. Sensitivity of the strains to inhibition varied: some were more sensitive to xylitol and some to erythritol. Xylitol also modified the expression levels of gbpB, gtfB, gtfC and gtfD genes that are important in polysaccharide-mediated adherence of S. mutans. CONCLUSION: The erythritol- and xylitol- induced inhibition of biofilm formation was only partly explained by decrease in the number of viable S. mutans cells or the amount of polysaccharides in the biofilm matrix, suggesting that in addition to reduced proliferation also the matrix composition and thereby the surface attachment quality of biofilm matrix may be altered by the polyols.


Asunto(s)
Biopelículas/efectos de los fármacos , Eritritol/farmacología , Streptococcus mutans/fisiología , Xilitol/farmacología , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Espectroscopía Dieléctrica/instrumentación , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Viabilidad Microbiana/efectos de los fármacos , Polisacáridos Bacterianos/metabolismo , Streptococcus mutans/efectos de los fármacos
5.
J Oral Microbiol ; 11(1): 1609838, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31105900

RESUMEN

Background and objectives: We have developed a standardized, easy-to-use in vitro model to study single- and multiple-species oral biofilms in real time through impedance technology, which elucidates the kinetics of biofilm formation in 96-well plates, without the requirement for any further manipulation. Design and Results: Using this system, biofilms of Streptococcus mutans appear to be sugar-dependent and highly resistant to amoxicilin, an antibiotic to which this oral pathogen is highly sensitive in a planktonic state. Saliva, tongue and dental plaque samples were also used as inocula to form multiple-species biofilms. DNA isolation and Illumina sequencing of the biofilms showed that the multi-species biofilms were formed by tens or hundreds of species, had a similar composition to the original inoculum, and included fastidious microorganisms which are important for oral health and disease. As an example of the potential applications of the model, we show that oral biofilms can be inhibited by amoxicilin, but in some cases they are induced by the antibiotic, suggesting the existence of responders and non-responders to a given antibiotic. Conclusions: We therefore propose the system as a valid in vitro model to study oral biofilm dynamics, including their susceptibility to antibiotics, antiseptics or anti-adhesive compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA