Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
J Leukoc Biol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136237

RESUMEN

Eosinophils, traditionally associated as central innate effector cells with type-2 immunity during allergic and helminth parasitic diseases, have recently been revealed to have important roles in tissue homeostasis as well as host defense in a broader variety of infectious diseases. In a dedicated session at the 2023 biennial conference of the International Eosinophil Society titled "Eosinophils in Host Defense", the multifaceted roles eosinophils play against diverse pathogens ranging from parasites to fungi, bacteria, and viruses was presented. In this review, the session speakers offer a comprehensive summary of recent discoveries across pathogen classes, positioning eosinophils as pivotal leukocytes in both host defense and pathology. By unraveling the intricacies of eosinophil engagement in host resistance, this exploration may provide valuable insights not only to understand specific underpinnings of the eosinophil functions related to each class of pathogens, but also to develop novel therapeutics effective against a broad spectrum of infectious diseases.

2.
bioRxiv ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38585846

RESUMEN

SARS-CoV-2 infection leads to vastly divergent clinical outcomes ranging from asymptomatic infection to fatal disease. Co-morbidities, sex, age, host genetics and vaccine status are known to affect disease severity. Yet, how the inflammatory milieu of the lung at the time of SARS-CoV-2 exposure impacts the control of viral replication remains poorly understood. We demonstrate here that immune events in the mouse lung closely preceding SARS-CoV-2 infection significantly impact viral control and we identify key innate immune pathways required to limit viral replication. A diverse set of pulmonary inflammatory stimuli, including resolved antecedent respiratory infections with S. aureus or influenza, ongoing pulmonary M. tuberculosis infection, ovalbumin/alum-induced asthma or airway administration of defined TLR ligands and recombinant cytokines, all establish an antiviral state in the lung that restricts SARS-CoV-2 replication upon infection. In addition to antiviral type I interferons, the broadly inducible inflammatory cytokines TNFα and IL-1 precondition the lung for enhanced viral control. Collectively, our work shows that SARS-CoV-2 may benefit from an immunologically quiescent lung microenvironment and suggests that heterogeneity in pulmonary inflammation that precedes or accompanies SARS-CoV-2 exposure may be a significant factor contributing to the population-wide variability in COVID-19 disease outcomes.

3.
J Exp Med ; 221(3)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38363547

RESUMEN

Tumor necrosis factor (TNF) is a pleiotropic inflammatory cytokine that mediates antimicrobial defense and granuloma formation in response to infection by numerous pathogens. We previously reported that Yersinia pseudotuberculosis colonizes the intestinal mucosa and induces the recruitment of neutrophils and inflammatory monocytes into organized immune structures termed pyogranulomas (PG) that control Yersinia infection. Inflammatory monocytes are essential for the control and clearance of Yersinia within intestinal PG, but how monocytes mediate Yersinia restriction is poorly understood. Here, we demonstrate that TNF signaling in monocytes is required for bacterial containment following enteric Yersinia infection. We further show that monocyte-intrinsic TNFR1 signaling drives the production of monocyte-derived interleukin-1 (IL-1), which signals through IL-1 receptors on non-hematopoietic cells to enable PG-mediated control of intestinal Yersinia infection. Altogether, our work reveals a monocyte-intrinsic TNF-IL-1 collaborative inflammatory circuit that restricts intestinal Yersinia infection.


Asunto(s)
Yersiniosis , Yersinia pseudotuberculosis , Humanos , Interleucina-1 , Yersinia , Factor de Necrosis Tumoral alfa , Monocitos
4.
Nat Microbiol ; 9(1): 120-135, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38066332

RESUMEN

Oxidative stress triggers ferroptosis, a form of cellular necrosis characterized by iron-dependent lipid peroxidation, and has been implicated in Mycobacterium tuberculosis (Mtb) pathogenesis. We investigated whether Bach1, a transcription factor that represses multiple antioxidant genes, regulates host resistance to Mtb. We found that BACH1 expression is associated clinically with active pulmonary tuberculosis. Bach1 deletion in Mtb-infected mice increased glutathione levels and Gpx4 expression that inhibit lipid peroxidation. Bach1-/- macrophages exhibited increased resistance to Mtb-induced cell death, while Mtb-infected Bach1-deficient mice displayed reduced bacterial loads, pulmonary necrosis and lipid peroxidation concurrent with increased survival. Single-cell RNA-seq analysis of lungs from Mtb-infected Bach1-/- mice revealed an enrichment of genes associated with ferroptosis suppression. Bach1 depletion in Mtb-infected B6.Sst1S mice that display human-like necrotic lung pathology also markedly reduced necrosis and increased host resistance. These findings identify Bach1 as a key regulator of cellular and tissue necrosis and host resistance in Mtb infection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Animales , Ratones , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Macrófagos/microbiología , Mycobacterium tuberculosis/genética , Necrosis , Tuberculosis/microbiología , Tuberculosis Pulmonar/genética
5.
Nat Commun ; 14(1): 8229, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086794

RESUMEN

Type-1 and type-3 interferons (IFNs) are important for control of viral replication; however, less is known about the role of Type-2 IFN (IFNγ) in anti-viral immunity. We previously observed that lung infection with Mycobacterium bovis BCG achieved though intravenous (iv) administration provides strong protection against SARS-CoV-2 in mice yet drives low levels of type-1 IFNs but robust IFNγ. Here we examine the role of ongoing IFNγ responses to pre-established bacterial infection on SARS-CoV-2 disease outcomes in two murine models. We report that IFNγ is required for iv BCG induced reduction in pulmonary viral loads, an outcome dependent on IFNγ receptor expression by non-hematopoietic cells. Importantly, we show that BCG infection prompts pulmonary epithelial cells to upregulate IFN-stimulated genes with reported anti-viral activity in an IFNγ-dependent manner, suggesting a possible mechanism for the observed protection. Finally, we confirm the anti-viral properties of IFNγ by demonstrating that the recombinant cytokine itself provides strong protection against SARS-CoV-2 challenge when administered intranasally. Together, our data show that a pre-established IFNγ response within the lung is protective against SARS-CoV-2 infection, suggesting that concurrent or recent infections that drive IFNγ may limit the pathogenesis of SARS-CoV-2 and supporting possible prophylactic uses of IFNγ in COVID-19 management.


Asunto(s)
COVID-19 , Interferón Tipo I , Animales , Ratones , SARS-CoV-2 , Interferón gamma , COVID-19/prevención & control , Pulmón , Interferón Tipo I/farmacología
7.
Front Immunol ; 14: 1240419, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720210

RESUMEN

Viral co-infections have been implicated in worsening tuberculosis (TB) and during the COVID-19 pandemic, the global rate of TB-related deaths has increased for the first time in over a decade. We and others have previously shown that a resolved prior or concurrent influenza A virus infection in Mycobacterium tuberculosis (Mtb)-infected mice resulted in increased pulmonary bacterial burden, partly through type I interferon (IFN-I)-dependent mechanisms. Here we investigated whether SARS-CoV-2 (SCV2) co-infection could also negatively affect bacterial control of Mtb. Importantly, we found that K18-hACE2 transgenic mice infected with SCV2 one month before, or months after aerosol Mtb exposure did not display exacerbated Mtb infection-associated pathology, weight loss, nor did they have increased pulmonary bacterial loads. However, pre-existing Mtb infection at the time of exposure to the ancestral SCV2 strain in infected K18-hACE2 transgenic mice or the beta variant (B.1.351) in WT C57Bl/6 mice significantly limited early SCV2 replication in the lung. Mtb-driven protection against SCV2 increased with higher bacterial doses and did not require IFN-I, TLR2 or TLR9 signaling. These data suggest that SCV2 co-infection does not exacerbate Mtb infection in mice, but rather the inflammatory response generated by Mtb infection in the lungs at the time of SCV2 exposure restricts viral replication.


Asunto(s)
COVID-19 , Coinfección , Interferón Tipo I , Mycobacterium tuberculosis , Ratones , Animales , Humanos , SARS-CoV-2 , Pandemias , Ratones Transgénicos , Ratones Endogámicos C57BL
8.
Sci Immunol ; 8(86): eadf8161, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37566678

RESUMEN

Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung-migrating helminth, Nippostrongylus brasiliensis, enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate, including increased accumulation of pulmonary SCV2-specific CD8+ T cells, and anti-CD8 antibody depletion abrogated the N. brasiliensis-mediated reduction in viral loads. Pulmonary macrophages with a type 2 transcriptional and epigenetic signature persist in the lungs of N. brasiliensis-exposed mice after clearance of the parasite and establish a primed environment for increased CD8+ T cell recruitment and activation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung-migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of antiviral CD8+ T cell responses.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Ratones , Humanos , Animales , COVID-19/metabolismo , SARS-CoV-2 , Macrófagos , Pulmón , Ratones Transgénicos
9.
Immunity ; 56(9): 2036-2053.e12, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572656

RESUMEN

Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.


Asunto(s)
Arginasa , Gripe Humana , Animales , Humanos , Ratones , Arginasa/genética , Arginasa/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Glutamina , Cinética , Pulmón/metabolismo , Mamíferos
10.
Am J Respir Cell Mol Biol ; 69(6): 638-648, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37578898

RESUMEN

Oxysterols (i.e., oxidized cholesterol species) have complex roles in biology. 25-Hydroxycholesterol (25HC), a product of the activity of cholesterol-25-hydroxylase (CH25H) on cholesterol, has recently been shown to be broadly antiviral, suggesting therapeutic potential against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, 25HC can also amplify inflammation and be converted by CYP7B1 (cytochrome P450 family 7 subfamily B member 1) to 7α,25-dihydroxycholesterol, a lipid with chemoattractant activity, via the G protein-coupled receptor EBI2 (Epstein-Barr virus-induced gene 2)/GPR183 (G protein-coupled receptor 183). Here, using in vitro studies and two different murine models of SARS-CoV-2 infection, we investigate the effects of these two oxysterols on SARS-CoV-2 pneumonia. We show that although 25HC and enantiomeric-25HC are antiviral in vitro against human endemic coronavirus-229E, they did not inhibit SARS-CoV-2; nor did supplemental 25HC reduce pulmonary SARS-CoV-2 titers in the K18-human ACE2 (angiotensin-converting enzyme 2) mouse model in vivo. Treatment with 25HC also did not alter immune cell influx into the airway, airspace cytokines, lung pathology, weight loss, symptoms, or survival but was associated with increased airspace albumin, an indicator of microvascular injury, and increased plasma proinflammatory cytokines. Conversely, mice treated with the EBI2/GPR183 inhibitor NIBR189 displayed a modest increase in lung viral load only at late time points but no change in weight loss. Consistent with these findings, although Ch25h and 25HC were upregulated in the lungs of SARS-CoV-2-infected wild-type mice, lung viral titers and weight loss in Ch25h-/- and Gpr183-/- mice infected with the ß variant were similar to those in control animals. Taken together, endogenous 25HCs do not significantly regulate early SARS-CoV-2 replication or pathogenesis, and supplemental 25HC may have proinjury rather than therapeutic effects in SARS-CoV-2 pneumonia.


Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Humanos , Animales , Ratones , SARS-CoV-2 , Herpesvirus Humano 4 , Hidroxicolesteroles/farmacología , Colesterol , Receptores Acoplados a Proteínas G , Antivirales/farmacología , Citocinas , Pérdida de Peso
11.
Curr Opin Immunol ; 84: 102365, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37437471

RESUMEN

Granulocytes are innate immune effector cells with essential functions in host resistance to bacterial infections. I will discuss emerging evidence that during Mycobacterium tuberculosis infection, counter-intuitively, eosinophils are host-protective while neutrophils are host detrimental. Additionally, I will propose a 'tipping-point' model in which neutrophils are an integral part of a feedforward loop driving tuberculosis disease exacerbation.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Neutrófilos , Eosinófilos , Inmunidad Innata
12.
bioRxiv ; 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37197029

RESUMEN

Tumor necrosis factor (TNF) is a pleiotropic inflammatory cytokine that mediates antimicrobial defense and granuloma formation in response to infection by numerous pathogens. Yersinia pseudotuberculosis colonizes the intestinal mucosa and induces recruitment of neutrophils and inflammatory monocytes into organized immune structures termed pyogranulomas that control the bacterial infection. Inflammatory monocytes are essential for control and clearance of Yersinia within intestinal pyogranulomas, but how monocytes mediate Yersinia restriction is poorly understood. Here, we demonstrate that TNF signaling in monocytes is required for bacterial containment following enteric Yersinia infection. We further show that monocyte-intrinsic TNFR1 signaling drives production of monocyte-derived interleukin-1 (IL-1), which signals through IL-1 receptor on non-hematopoietic cells to enable pyogranuloma-mediated control of Yersinia infection. Altogether, our work reveals a monocyte-intrinsic TNF-IL-1 collaborative circuit as a crucial driver of intestinal granuloma function, and defines the cellular target of TNF signaling that restricts intestinal Yersinia infection.

13.
Open Forum Infect Dis ; 10(3): ofad128, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36998631

RESUMEN

Background: To better understand the pathogenesis of pericardial tuberculosis (PCTB), we sought to characterize the systemic inflammatory profile in people with human immunodeficiency virus type 1 (HIV-1) with latent TB infection (LTBI), pulmonary TB (PTB), or PCTB. Methods: Using Luminex, we measured the concentration of 39 analytes in pericardial fluid (PCF) and paired plasma from 18 PCTB participants, and plasma from 16 LTBI and 20 PTB participants. Follow-up plasma samples were also obtained from PTB and PCTB participants. HLA-DR expression on Mycobacterium tuberculosis-specific CD4 T cells was measured in baseline samples using flow cytometry. Results: Assessment of the overall systemic inflammatory profile by principal component analysis showed that the inflammatory profile of active TB participants was distinct from the LTBI group, while PTB patients could not be distinguished from those with PCTB. When comparing the inflammatory profile between PCF and paired blood, we found that the concentrations of most analytes (25/39) were elevated at site of disease. However, the inflammatory profile in PCF partially mirrored inflammatory events in the blood. After TB treatment completion, the overall plasma inflammatory profile reverted to that observed in the LTBI group. Lastly, HLA-DR expression showed the best performance for TB diagnosis compared to previously described biosignatures built from soluble markers. Conclusions: Our results show that the inflammatory profile in blood was comparable between PTB and PCTB. However, at the site of infection (PCF), inflammation was significantly elevated compared to blood. Additionally, our data emphasize the potential role of HLA-DR expression as a biomarker for TB diagnosis.

15.
Front Immunol ; 13: 1009016, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439130

RESUMEN

Studies of the immune response at the site of disease in extra-pulmonary tuberculosis (EPTB) disease are scarce. In this study, we compared the cellular profile of Mycobacterium tuberculosis (Mtb)-specific T cells in pericardial fluid and peripheral blood in patients with pericardial TB (PCTB). Whole blood and pericardial fluid (PCF) samples were collected at the time of diagnostic sampling, with repeat blood sampling after completion of anti-tubercular treatment (ATT) in 16 PCTB patients, most of them being HIV-1 infected (n=14). These samples were stimulated ex vivo and the phenotypic and functional cellular profile of PCF and blood was assessed by flow cytometry. We found that lymphocytes were the predominant cell type in PCF in PCTB, with a preferential influx of CD4 T cells. The frequencies of TNF-α producing Mtb-specific granulocytes and Mtb-specific CD4 T cells were significantly higher in PCF compared to blood. Mtb-specific CD4 T cells in PCF exhibited a distinct phenotype compared to those in blood, with greater GrB expression and lower CD27 and KLRG1 expression. We observed no difference in the production IFNγ, TNF or IL-2 by Mtb-specific CD4 T cells between the two compartments, but MIP-1ß production was lower in the PCF T cells. Bacterial loads were not associated with alterations in the phenotype or function of Mtb-specific CD4 T cells. Upon ATT completion, HLA-DR, Ki-67 and GrB expression was significantly decreased, and relative IL-2 production was increased in peripheral Mtb-specific CD4 T cells. Overall, using an ex vivo assay to compare the immune response towards Mtb in PCF and in blood, we identified significant difference in the phenotypic profile of Mtb-specific CD4 T response between these two compartments. Moreover, we show that the activation profile of peripheral Mtb-specific CD4 T cells could be used to monitor treatment response in PCTB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Ganglionar , Humanos , Linfocitos T CD4-Positivos , Interleucina-2/metabolismo , Fenotipo
16.
J Clin Invest ; 132(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36377664

RESUMEN

Subcutaneous phaeohyphomycosis typically affects immunocompetent individuals following traumatic inoculation. Severe or disseminated infection can occur in CARD9 deficiency or after transplantation, but the mechanisms protecting against phaeohyphomycosis remain unclear. We evaluated a patient with progressive, refractory Corynespora cassiicola phaeohyphomycosis and found that he carried biallelic deleterious mutations in CLEC7A encoding the CARD9-coupled, ß-glucan-binding receptor, Dectin-1. The patient's PBMCs failed to produce TNF-α and IL-1ß in response to ß-glucan and/or C. cassiicola. To confirm the cellular and molecular requirements for immunity against C. cassiicola, we developed a mouse model of this infection. Mouse macrophages required Dectin-1 and CARD9 for IL-1ß and TNF-α production, which enhanced fungal killing in an interdependent manner. Deficiency of either Dectin-1 or CARD9 was associated with more severe fungal disease, recapitulating the human observation. Because these data implicated impaired Dectin-1 responses in susceptibility to phaeohyphomycosis, we evaluated 17 additional unrelated patients with severe forms of the infection. We found that 12 out of 17 carried deleterious CLEC7A mutations associated with an altered Dectin-1 extracellular C-terminal domain and impaired Dectin-1-dependent cytokine production. Thus, we show that Dectin-1 and CARD9 promote protective TNF-α- and IL-1ß-mediated macrophage defense against C. cassiicola. More broadly, we demonstrate that human Dectin-1 deficiency may contribute to susceptibility to severe phaeohyphomycosis by certain dematiaceous fungi.


Asunto(s)
Feohifomicosis , beta-Glucanos , Animales , Humanos , Masculino , Ratones , Proteínas Adaptadoras de Señalización CARD/genética , Lectinas Tipo C/genética , Macrófagos/metabolismo , Feohifomicosis/microbiología , Factor de Necrosis Tumoral alfa/genética
17.
bioRxiv ; 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36380767

RESUMEN

Helminth endemic regions report lower COVID-19 morbidity and mortality. Here, we show that lung remodeling from a prior infection with a lung migrating helminth, Nippostrongylus brasiliensis , enhances viral clearance and survival of human-ACE2 transgenic mice challenged with SARS-CoV-2 (SCV2). This protection is associated with a lymphocytic infiltrate including an increased accumulation of pulmonary SCV2-specific CD8+ T cells and anti-CD8 antibody depletion abrogated the N. brasiliensis -mediated reduction in viral loads. Pulmonary macrophages with a type-2 transcriptional signature persist in the lungs of N. brasiliensis exposed mice after clearance of the parasite and establish a primed environment for increased antigen presentation. Accordingly, depletion of macrophages ablated the augmented viral clearance and accumulation of CD8+ T cells driven by prior N. brasiliensis infection. Together, these findings support the concept that lung migrating helminths can limit disease severity during SCV2 infection through macrophage-dependent enhancement of anti-viral CD8+ T cell responses.

18.
bioRxiv ; 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36263064

RESUMEN

Oxysterols (i.e., oxidized cholesterol species) have complex roles in biology. 25-hydroxycholesterol (25HC), a product of activity of cholesterol-25-hydroxylase (CH25H) upon cholesterol, has recently been shown to be broadly antiviral, suggesting therapeutic potential against SARS-CoV-2. However, 25HC can also amplify inflammation and tissue injury and be converted by CYP7B1 to 7α,25HC, a lipid with chemoattractant activity via the G protein-coupled receptor, EBI2/GPR183. Here, using in vitro studies and two different murine models of SARS-CoV-2 infection, we investigate the effects of these two oxysterols on SARS-CoV-2 pneumonia. We show that while 25HC and enantiomeric-25HC are antiviral in vitro against human endemic coronavirus-229E, they did not inhibit SARS-CoV-2; nor did supplemental 25HC reduce pulmonary SARS-CoV-2 titers in the K18-human ACE2 mouse model in vivo. 25HC treatment also did not alter immune cell influx into the airway, airspace cytokines, lung pathology, weight loss, symptoms, or survival but was associated with increased airspace albumin, an indicator of microvascular injury, and increased plasma pro-inflammatory cytokines. Conversely, mice treated with the EBI2/GPR183 inhibitor NIBR189 displayed a modest increase in lung viral load only at late time points, but no change in weight loss. Consistent with these findings, although Ch25h was upregulated in the lungs of SARS-CoV-2-infected WT mice, lung viral titers and weight loss in Ch25h-/- and Gpr183-/- mice infected with the beta variant were similar to control animals. Taken together, endogenous 25-hydroxycholesterols do not significantly regulate early SARS-CoV-2 replication or pathogenesis and supplemental 25HC may have pro-injury rather than therapeutic effects in SARS-CoV-2 pneumonia.

19.
J Exp Med ; 219(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36069923

RESUMEN

Cellular necrosis during Mycobacterium tuberculosis (Mtb) infection promotes both immunopathology and bacterial dissemination. Glutathione peroxidase-4 (Gpx4) is an enzyme that plays a critical role in preventing iron-dependent lipid peroxidation-mediated cell death (ferroptosis), a process previously implicated in the necrotic pathology seen in Mtb-infected mice. Here, we document altered GPX4 expression, glutathione levels, and lipid peroxidation in patients with active tuberculosis and assess the role of this pathway in mice genetically deficient in or overexpressing Gpx4. We found that Gpx4-deficient mice infected with Mtb display substantially increased lung necrosis and bacterial burdens, while transgenic mice overexpressing the enzyme show decreased bacterial loads and necrosis. Moreover, Gpx4-deficient macrophages exhibited enhanced necrosis upon Mtb infection in vitro, an outcome suppressed by the lipid peroxidation inhibitor, ferrostatin-1. These findings provide support for the role of ferroptosis in Mtb-induced necrosis and implicate the Gpx4/GSH axis as a target for host-directed therapy of tuberculosis.


Asunto(s)
Ferroptosis , Glutatión Peroxidasa/metabolismo , Tuberculosis , Animales , Glutatión/metabolismo , Peroxidación de Lípido , Ratones , Ratones Transgénicos , Necrosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Tuberculosis/inmunología , Tuberculosis/metabolismo
20.
Front Immunol ; 13: 931194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967332

RESUMEN

Lungs balance threat from primary viral infection, secondary infection, and inflammatory damage. Severe pulmonary inflammation induces vascular permeability, edema, and organ dysfunction. We previously demonstrated that poly(I:C) (pICLC) induced type 1 interferon (t1IFN) protected mice from Cryptococcus gattii (Cg) via local iron restriction. Here we show pICLC increased serum protein and intravenously injected FITC-dextran in the lung airspace suggesting pICLC induces vascular permeability. Interestingly, pICLC induced a pro-inflammatory signature with significant expression of IL-1 and IL-6 which depended on MDA5 and t1IFN. Vascular permeability depended on MDA5, t1IFN, IL-1, and IL-6. T1IFN also induced MDA5 and other MDA5 signaling components suggesting that positive feedback contributes to t1IFN dependent expression of the pro-inflammatory signature. Vascular permeability, induced by pICLC or another compound, inhibited Cg by limiting iron. These data suggest that pICLC induces t1IFN which potentiates pICLC-MDA5 signaling increasing IL-1 and IL-6 resulting in leakage of antimicrobial serum factors into lung airspace. Thus, induced vascular permeability may act as an innate defense mechanism against opportunistic fungal infection, such as cryptococcosis, and may be exploited as a host-directed therapeutic target.


Asunto(s)
Criptococosis , Cryptococcus gattii , Interferón Tipo I , Infecciones Oportunistas , Animales , Permeabilidad Capilar , Criptococosis/metabolismo , Interferón Tipo I/metabolismo , Interleucina-1/metabolismo , Interleucina-6/metabolismo , Hierro/metabolismo , Pulmón/metabolismo , Ratones , Infecciones Oportunistas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA