Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cancers (Basel) ; 16(10)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38791901

RESUMEN

BACKGROUND: Accurate, reliable, non-invasive assessment of patients diagnosed with prostate cancer is essential for proper disease management. Quantitative assessment of multi-parametric MRI, such as through artificial intelligence or spectral/statistical approaches, can provide a non-invasive objective determination of the prostate tumor aggressiveness without side effects or potential poor sampling from needle biopsy or overdiagnosis from prostate serum antigen measurements. To simplify and expedite prostate tumor evaluation, this study examined the efficacy of autonomously extracting tumor spectral signatures for spectral/statistical algorithms for spatially registered bi-parametric MRI. METHODS: Spatially registered hypercubes were digitally constructed by resizing, translating, and cropping from the image sequences (Apparent Diffusion Coefficient (ADC), High B-value, T2) from 42 consecutive patients in the bi-parametric MRI PI-CAI dataset. Prostate cancer blobs exceeded a threshold applied to the registered set from normalizing the registered set into an image that maximizes High B-value, but minimizes the ADC and T2 images, appearing "green" in the color composite. Clinically significant blobs were selected based on size, average normalized green value, sliding window statistics within a blob, and position within the hypercube. The center of mass and maximized sliding window statistics within the blobs identified voxels associated with tumor signatures. We used correlation coefficients (R) and p-values, to evaluate the linear regression fits of the z-score and SCR (with processed covariance matrix) to tumor aggressiveness, as well as Area Under the Curves (AUC) for Receiver Operator Curves (ROC) from logistic probability fits to clinically significant prostate cancer. RESULTS: The highest R (R > 0.45), AUC (>0.90), and lowest p-values (<0.01) were achieved using z-score and modified registration applied to the covariance matrix and tumor signatures selected from the "greenest" parts from the selected blob. CONCLUSIONS: The first autonomous tumor signature applied to spatially registered bi-parametric MRI shows promise for determining prostate tumor aggressiveness.

2.
Diagnostics (Basel) ; 13(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37892059

RESUMEN

(1) Background: Non-invasive prostate cancer assessments using multi-parametric MRI are essential to the reliable detection of lesions and proper management of patients. While current guidelines call for the administration of Gadolinium-containing intravenous contrast injections, eliminating such injections would simplify scanning and reduce patient risk and costs. However, augmented image analysis is necessary to extract important diagnostic information from MRIs. Purpose: This study aims to extend previous work on the signal to clutter ratio and test whether prostate tumor eccentricity and volume are indicators of tumor aggressiveness using bi-parametric (BP)-MRI. (2) Methods: This study retrospectively processed 42 consecutive prostate cancer patients from the PI-CAI data collection. BP-MRIs (apparent diffusion coefficient, high b-value, and T2 images) were resized, translated, cropped, and stitched to form spatially registered BP-MRIs. The International Society of Urological Pathology (ISUP) grade was used to judge cases of prostate cancer as either clinically significant prostate cancer (CsPCa) (ISUP ≥ 2) or clinically insignificant prostate cancer (CiPCa) (ISUP < 2). The Adaptive Cosine Estimator (ACE) algorithm was applied to the BP-MRIs, followed by thresholding, and then eccentricity and volume computations, from the labeled and blobbed detection maps. Then, univariate and multivariate linear regression fittings of eccentricity and volume were applied to the ISUP grade. The fits were quantitatively evaluated by computing correlation coefficients (R) and p-values. Area under the curve (AUC) and receiver operator characteristic (ROC) curve scores were used to assess the logistic fitting to CsPCa/CiPCa. (3) Results: Modest correlation coefficients (R) (>0.35) and AUC scores (0.70) for the linear and/or logistic fits from the processed prostate tumor eccentricity and volume computations for the spatially registered BP-MRIs exceeded fits using the parameters of prostate serum antigen, prostate volume, and patient age (R~0.17). (4) Conclusions: This is the first study that applied spectral approaches to BP-MRIs to generate tumor eccentricity and volume metrics to assess tumor aggressiveness. This study found significant values of R and AUC (albeit below those from multi-parametric MRI) to fit and relate the metrics to the ISUP grade and CsPCA/CiPCA, respectively.

3.
Diagnostics (Basel) ; 13(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37370903

RESUMEN

Background: Current prostate cancer evaluation can be inaccurate and burdensome. Quantitative evaluation of Magnetic Resonance Imaging (MRI) sequences non-invasively helps prostate tumor assessment. However, including Dynamic Contrast Enhancement (DCE) in the examined MRI sequence set can add complications, inducing possible side effects from the IV placement or injected contrast material and prolonging scanning time. More accurate quantitative MRI without DCE and artificial intelligence approaches are needed. Purpose: Predict the risk of developing Clinically Significant (Insignificant) prostate cancer CsPCa (CiPCa) and correlate with the International Society of Urologic Pathology (ISUP) grade using processed Signal to Clutter Ratio (SCR) derived from spatially registered bi-parametric MRI (SRBP-MRI) and thereby enhance non-invasive management of prostate cancer. Methods: This pilot study retrospectively analyzed 42 consecutive prostate cancer patients from the PI-CAI data collection. BP-MRI (Apparent Diffusion Coefficient, High B-value, T2) were resized, translated, cropped, and stitched to form spatially registered SRBP-MRI. Efficacy of noise reduction was tested by regularizing, eliminating principal components (PC), and minimizing elliptical volume from the covariance matrix to optimize the SCR. MRI guided biopsy (MRBx), Systematic Biopsy (SysBx), combination (MRBx + SysBx), or radical prostatectomy determined the ISUP grade for each patient. ISUP grade ≥ 2 (<2) was judged as CsPCa (CiPCa). Linear and logistic regression were fitted to ISUP grade and CsPCa/CiPCa SCR. Correlation Coefficients (R) and Area Under the Curves (AUC) for Receiver Operator Curves (ROC) evaluated the performance. Results: High correlation coefficients (R) (>0.55) and high AUC (=1.0) for linear and/or logistic fit from processed SCR and z-score for SRBP-MRI greatly exceed fits using prostate serum antigen, prostate volume, and patient age (R ~ 0.17). Patients assessed with combined MRBx + SysBx and from individual MRI scanners achieved higher R (DR = 0.207+/-0.118) than all patients used in the fits. Conclusions: In the first study, to date, spectral approaches for assessing tumor aggressiveness on SRBP-MRI have been applied and tested and achieved high values of R and exceptional AUC to fit the ISUP grade and CsPCA/CiPCA, respectively.

5.
Front Oncol ; 13: 1066498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761948

RESUMEN

Background: Current prostate cancer evaluation can be inaccurate and burdensome. To help non-invasive prostate tumor assessment, recent algorithms applied to spatially registered multi-parametric (SRMP) MRI extracted novel clinically relevant metrics, namely the tumor's eccentricity (shape), signal-to-clutter ratio (SCR), and volume. Purpose: Conduct a pilot study to predict the risk of developing clinically significant prostate cancer using nomograms and employing Decision Curves Analysis (DCA) from the SRMP MRI-based features to help clinicians non-invasively manage prostate cancer. Methods: This study retrospectively analyzed 25 prostate cancer patients. MP-MRI (T1, T2, diffusion, dynamic contrast-enhanced) were resized, translated, and stitched to form SRMP MRI. Target detection algorithm [adaptive cosine estimator (ACE)] applied to SRMP MRI determines tumor's eccentricity, noise reduced SCR (by regularizing or eliminating principal components (PC) from the covariance matrix), and volume. Pathology assessed wholemount prostatectomy for Gleason score (GS). Tumors with GS >=4+3 (<=3+4) were judged as "Clinically Significant" ("Insignificant"). Logistic regression combined eccentricity, SCR, volume to generate probability distribution. Nomograms, DCA used all patients plus training (13 patients) and test (12 patients) sets. Area Under the Curves for (AUC) for Receiver Operator Curves (ROC) and p-values evaluated the performance. Results: Combining eccentricity (0.45 ACE threshold), SCR (3, 4 PCs), SCR (regularized, modified regularization) with tumor volume (0.65 ACE threshold) improved AUC (>0.70) for ROC curves and p-values (<0.05) for logistic fit. DCA showed greater net benefit from model fit than univariate analysis, treating "all," or "none." Training/test sets achieved comparable AUC but with higher p-values. Conclusions: Performance of nomograms and DCA based on metrics derived from SRMP-MRI in this pilot study were comparable to those using prostate serum antigen, age, and PI-RADS.

6.
Quant Imaging Med Surg ; 12(7): 3844-3859, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35782272

RESUMEN

Background: Radiologists currently subjectively examine multi-parametric magnetic resonance imaging (MP-MRI) to determine prostate tumor aggressiveness using the Prostate Imaging Reporting and Data System scoring system (PI-RADS). Recent studies showed that modified signal to clutter ratio (SCR), tumor volume, and eccentricity (elongation or roundness) of prostate tumors correlated with Gleason score (GS). No previous studies have combined the prostate tumor's shape, SCR, tumor volume, in order to predict potential tumor aggressiveness and GS. Methods: MP-MRI (T1, T2, diffusion, dynamic contrast-enhanced images) were obtained, resized, translated, and stitched to form spatially registered multi-parametric cubes. Multi-parametric signatures that characterize prostate tumors were inserted into a target detection algorithm [adaptive cosine estimator (ACE)]. Pixel-based blobbing, and labeling were applied to the threshold ACE images. Eccentricity calculation used moments of inertia from the blobs. Tumor volume was computed by counting pixels within multi parametric MRI blobs and tumor outlines based on pathologist assessment of whole mount histology. Pathology assessment of GS was performed on whole mount prostatectomy. The covariance matrix and mean of normal tissue background was computed from normal prostate. Using signatures and normal tissue statistics, the z-score, noise corrected SCR [principal component (PC), modified regularization] from each patient was computed. Eccentricity, tumor volume, and SCR were fitted to GS. Analysis of variance assesses the relationship among the variables. Results: A multivariate analysis generated correlation coefficient (0.60 to 0.784) and P value (0.00741 to <0.0001) from fitting two sets of independent variates, namely, tumor eccentricity (the eccentricity for the largest blob, weighted average for the eccentricity) and SCR (removing 3 PCs, removing 4 PCs, modified regularization, and z-score) to GS. The eccentricity t-statistic exceeded the SCR t-statistic. The three-variable fit to GS using tumor volume (histology, MRI) yielded correlation coefficients ranging from 0.724 to 0.819 (P value <<0.05). Tumor volumes generated from histology yielded higher correlation coefficients than MRI volumes. Adding volume to eccentricity and SCR adds little improvement for fitting GS due to higher correlation coefficients among independent variables and little additional, independent information. Conclusions: Combining prostate tumors eccentricity with SCR relatively highly correlates with GS.

7.
Quant Imaging Med Surg ; 12(3): 1859-1870, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35284265

RESUMEN

Background: Radiologists currently subjectively examine multi-parametric magnetic resonance imaging (MRI) to detect possible clinically significant lesions using the Prostate Imaging Reporting and Data System (PI-RADS) protocol. The assessment of imaging, however, relies on the experience and judgement of radiologists creating opportunity for inter-reader variability. Quantitative metrics, such as z-score and signal to clutter ratio (SCR), are therefore needed. Methods: Multi-parametric MRI (T1, T2, diffusion, dynamic contrast-enhanced images) were resampled, rescaled, translated, and stitched to form spatially registered multi-parametric cubes for patients undergoing radical prostatectomy. Multi-parametric signatures that characterize prostate tumors were inserted into z-score and SCR. The multispectral covariance matrix was computed for the outlined normal prostate. The z-score from each MRI image was computed and summed. To reduce noise in the covariance matrix, following matrix decomposition, the noisy eigenvectors were removed. Also, regularization and modified regularization was applied to the covariance matrix by minimizing the discrimination score. The filtered and regularized covariance matrices were inserted into the SCR calculation. The z-score and SCR were quantitatively compared to Gleason scores from clinical pathology assessment of the histology of sectioned wholemount prostates. Results: Twenty-six consecutive patients were enrolled in this retrospective study. Median patient age was 60 years (range, 49 to 75 years), median prostate-specific antigen (PSA) was 5.8 ng/mL (range, 2.3 to 23.7 ng/mL), and median Gleason score was 7 (range, 6 to 9). A linear fit of the summed z-score against Gleason score found a correlation of R=0.48 and a P value of 0.015. A linear fit of the SCR from regularizing covariance matrix against Gleason score found a correlation of R=0.39 and a P value of 0.058. The SCR employing the modified regularizing covariance matrix against Gleason score found a correlation of R=0.52 and a P value of 0.007. A linear fit of the SCR from filtering out 3 and 4 eigenvectors from the covariance matrix against Gleason score found correlations of R=0.50 and 0.44, respectively, and P values of 0.011 and 0.027, respectively. Conclusions: Z-score and SCR using filtered and regularized covariance matrices derived from spatially registered multi-parametric MRI correlates with Gleason score with highly significant P values.

8.
Quant Imaging Med Surg ; 12(2): 1096-1108, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35111607

RESUMEN

BACKGROUND: Prostate tumor volume predicts biochemical recurrence, metastases, and tumor proliferation. A recent study showed that prostate tumor eccentricity (elongation or roundness) correlated with Gleason score. No studies examined the relationship among the prostate tumor's shape, volume, and potential aggressiveness. METHODS: Of the 26 patients that were analyzed, 18 had volumes >1 cc for the histology-based study, and 25 took up contrast material for the MRI portion of this study. This retrospective study quantitatively compared tumor eccentricity and volume measurements from pathology assessment sectioned wholemount prostates and multi-parametric MRI to Gleason scores. Multi-parametric MRI (T1, T2, diffusion, dynamic contrast-enhanced images) were resized, translated, and stitched to form spatially registered multi-parametric cubes. Multi-parametric signatures that characterize prostate tumors were inserted into a target detection algorithm (Adaptive Cosine Estimator, ACE). Various detection thresholds were applied to discriminate tumor from normal tissue. Pixel-based blobbing, and labeling were applied to digitized pathology slides and threshold ACE images. Tumor volumes were measured by counting voxels within the blob. Eccentricity calculation used moments of inertia from the blobs. RESULTS: From wholemount prostatectomy slides, fitting two sets of independent variables, prostate tumor eccentricity (largest blob eccentricity, weighted eccentricity, filtered weighted eccentricity) and tumor volume (largest blob volume, average blob volume, filtered average blob volume) to Gleason score in a multivariate analysis, yields correlation coefficient R=0.798 to 0.879 with P<0.01. The eccentricity t-statistic exceeded the volume t-statistic. Fitting histology-based total prostate tumor volume against Gleason score yields R=0.498, P=0.0098. From multi-parametric MRI, the correlation coefficient R between the Gleason score and the largest blob eccentricity for varying thresholds (0.30 to 0.55) ranged from -0.51 to -0.672 (P<0.01). For varying thresholds (0.60 to 0.80) for MRI detection, the R between the largest blob volume eccentricity against the Gleason score ranged from 0.46 to 0.50 (P<0.03). Combining tumor eccentricity and tumor volume in multivariate analysis failed to increase Gleason score prediction. CONCLUSIONS: Prostate tumor eccentricity, determined by histology or MRI, more accurately predicted Gleason score than prostate tumor volume. Combining tumor eccentricity with volume from histology-based analysis enhanced Gleason score prediction, unlike MRI.

9.
Front Oncol ; 12: 1033323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698418

RESUMEN

Background: Evaluating and displaying prostate cancer through non-invasive imagery such as Multi-Parametric MRI (MP-MRI) bolsters management of patients. Recent research quantitatively applied supervised target algorithms using vectoral tumor signatures to spatially registered T1, T2, Diffusion, and Dynamic Contrast Enhancement images. This is the first study to apply the Reed-Xiaoli (RX) multi-spectral anomaly detector (unsupervised target detector) to prostate cancer, which searches for voxels that depart from the background normal tissue, and detects aberrant voxels, presumably tumors. Methods: MP-MRI (T1, T2, diffusion, dynamic contrast-enhanced images, or seven components) were prospectively collected from 26 patients and then resized, translated, and stitched to form spatially registered multi-parametric cubes. The covariance matrix (CM) and mean µ were computed from background normal tissue. For RX, noise was reduced for the CM by filtering out principal components (PC), regularization, and elliptical envelope minimization. The RX images were compared to images derived from the threshold Adaptive Cosine Estimator (ACE) and quantitative color analysis. Receiver Operator Characteristic (ROC) curves were used for RX and reference images. To quantitatively assess algorithm performance, the Area Under the Curve (AUC) and the Youden Index (YI) points for the ROC curves were computed. Results: The patient average for the AUC and [YI] from ROC curves for RX from filtering 3 and 4 PC was 0.734[0.706] and 0.727[0.703], respectively, relative to the ACE images. The AUC[YI] for RX from modified Regularization was 0.638[0.639], Regularization 0.716[0.690], elliptical envelope minimization 0.544[0.597], and unprocessed CM 0.581[0.608] using the ACE images as Reference Image. The AUC[YI] for RX from filtering 3 and 4 PC was 0.742[0.711] and 0.740[0.708], respectively, relative to the quantitative color images. The AUC[YI] for RX from modified Regularization was 0.643[0.648], Regularization 0.722[0.695], elliptical envelope minimization 0.508[0.605], and unprocessed CM 0.569[0.615] using the color images as Reference Image. All standard errors were less than 0.020. Conclusions: This first study of spatially registered MP-MRI applied anomaly detection using RX, an unsupervised target detection algorithm for prostate cancer. For RX, filtering out PC and applying Regularization achieved higher AUC and YI using ACE and color images as references than unprocessed CM, modified Regularization, and elliptical envelope minimization.

10.
Quant Imaging Med Surg ; 11(10): 4235-4244, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34603979

RESUMEN

BACKGROUND: Proliferating cancer cells interacting with their microenvironment affects a tumor's spatial shape. Elongation or roundness (eccentricity) of lung, skin, and breast cancers indicates the cancer's relative aggressiveness. Non-invasive determination of the prostate tumor's shape should provide meaningful input for prognostication and clinical management. There are currently few studies of prostate tumor shape, therefore this study examines the relationship between a prostate tumor's eccentricity, derived from spatially registered multi-parametric MRI and histology slides, and Gleason scores. METHODS: A total of 26 consecutive patients were enrolled in the study. Median patient age was 60 years (range, 49 to 75 years), median PSA was 5.8 ng/mL (range, 2.3 to 23.7 ng/mL, and median Gleason score was 7 (range, 6 to 9). Multi-parametric MRI (T1, T2, Diffusion, Dynamic Contrast Enhanced) were resampled, rescaled, translated, and stitched to form spatially registered multi-parametric cubes. Multi-parametric signatures that characterize prostate tumors were inserted into a target detection algorithm (Adaptive Cosine Estimator, ACE). Various detection thresholds were applied to discriminate tumor from normal tissue. Also, tumor shape was computed from the histology slides. Blobbing, labeling, and calculation of eccentricity using moments of inertia were applied to the multi-parametric MRI and histology slides. The eccentricity measurements were compared to the Gleason scores from 25 patients. RESULTS: From histology slides analysis: the correlation coefficient between the eccentricity for the largest blob and a weighted average eccentricity against the Gleason score ranged from -0.67 to -0.78 for all 18 patients whose tumor volume exceeded 1.0 cc. From multi-parametric MRI analysis: the correlation coefficient between the eccentricity for the largest blob for varying thresholds against the Gleason score ranged from -0.60 to -0.66 for all 25 patients showing contrast uptake in the Dynamic Contrast Enhancement (DCE) MRI. CONCLUSIONS: Spherical shape prostate adenocarcinoma shows a propensity for higher Gleason score. This novel finding follows lung and breast adenocarcinomas but depart from other primary tumor types. Analysis of multi-parametric MRI can non-invasively determine the prostate tumor's morphology and add critical information for prognostication and disease management. Eccentricity of smaller tumors (<1.0 cc) from MP-MRI correlates well with Gleason score, unlike eccentricity measured using histology of wholemount prostatectomy.

11.
Quant Imaging Med Surg ; 11(1): 119-132, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33392016

RESUMEN

BACKGROUND: Prostate tumor volume correlates with critical components of cancer staging such as Gleason score (GS) grade, predicted disease progression, and metastasis. Therefore, non-invasive tumor volume measurement may elevate clinical management. Radiology assessments of multi-parametric MRI (MP-MRI) commonly visually examine individual images to determine possible tumor presence. This study combines registered MP-MRI into a single image that display normal tissue and possible lesions. This study tests and exploits the vector nature of spatially registered MP-MRI by using supervised target detection algorithms (STDA) and color display and psychovisual analysis (CIELAB) to non-invasively estimate prostate tumor volume. METHODS: MRI, including T1, T2, diffusion [apparent diffusion coefficient (ADC)], dynamic contrast enhanced (DCE) images, were resampled, rescaled, translated, and stitched to form spatially registered Multi-parametric cubes. The multi-parametric or multi-spectral signatures (7-component or T1, T2, ADC, etc.) that characterize the prostate tumors were inserted into target detection algorithms with conical decision surfaces (adaptive cosine estimator, ACE). Various detection thresholds were applied to discriminate tumor from normal tissue. In addition, tumor appeared as yellow in color images that were created by assigning red to washout from DCE, green to high B from diffusion, and blue to autonomous diffusion image. The yellow voxels in the three-channel hypercube were visually identified by a reader and recording voxels that exceed a threshold in the b* component of the CIELAB algorithm. The number of reported tumor voxels were converted to volume based on spatial resolution and slice separation. The tumor volume measurements were quantitatively validated by comparing the tumor volume computations to the pathologist's assessment of the histology of sectioned whole mount prostates from 26 consecutive patients with prostate adenocarcinoma who underwent radical prostatectomy. This study analyzed tumors exceeding 1 cc and that also took up contrast material (18 patients). RESULTS: High correlation coefficients for tumor volume measurements using supervised target detection and color analysis vs. histology from wholemount prostatectomy were computed (R=0.83 and 0.91, respectively). A linear fit for tumor volume measurements using for supervised target detection and color analysis vs. tumor measurements from radical prostatectomy (after correcting for shrinkage from the radical prostatectomy) results in a slope of 1.02 and 3.02, respectively. A polynomial fit for the color analysis to the histology found (R=0.95). Voxels exceeding a threshold in the b* part of the CIELAB algorithm yielded correlation coefficients (0.71, 0.80) offsets (0.01 cc, -0.63 cc) and slopes (1.99, 0.89) against the wholemount prostatectomy and color analysis, respectively. CONCLUSIONS: Supervised target detection and color display and analysis applied to registered MP-MRI non-invasively estimates prostate tumor volumes >1 cc and displaying angiogenesis.

12.
Comput Biol Med ; 94: 65-73, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29407999

RESUMEN

BACKGROUND: Gleason Score (GS) is a validated predictor of prostate cancer (PCa) disease progression and outcomes. GS from invasive needle biopsies suffers from significant inter-observer variability and possible sampling error, leading to underestimating disease severity ("underscoring") and can result in possible complications. A robust non-invasive image-based approach is, therefore, needed. PURPOSE: Use spatially registered multi-parametric MRI (MP-MRI), signatures, and supervised target detection algorithms (STDA) to non-invasively GS PCa at the voxel level. METHODS AND MATERIALS: This study retrospectively analyzed 26 MP-MRI from The Cancer Imaging Archive. The MP-MRI (T2, Diffusion Weighted, Dynamic Contrast Enhanced) were spatially registered to each other, combined into stacks, and stitched together to form hypercubes. Multi-parametric (or multi-spectral) signatures derived from a training set of registered MP-MRI were transformed using statistics-based Whitening-Dewhitening (WD). Transformed signatures were inserted into STDA (having conical decision surfaces) applied to registered MP-MRI determined the tumor GS. The MRI-derived GS was quantitatively compared to the pathologist's assessment of the histology of sectioned whole mount prostates from patients who underwent radical prostatectomy. In addition, a meta-analysis of 17 studies of needle biopsy determined GS with confusion matrices and was compared to the MRI-determined GS. RESULTS: STDA and histology determined GS are highly correlated (R = 0.86, p < 0.02). STDA more accurately determined GS and reduced GS underscoring of PCa relative to needle biopsy as summarized by meta-analysis (p < 0.05). CONCLUSION: This pilot study found registered MP-MRI, STDA, and WD transforms of signatures shows promise in non-invasively GS PCa and reducing underscoring with high spatial resolution.


Asunto(s)
Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Neoplasias de la Próstata/diagnóstico por imagen , Humanos , Masculino , Proyectos Piloto , Estudios Retrospectivos
13.
Acta Oncol ; 56(4): 531-540, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28358666

RESUMEN

BACKGROUND: For lung tumors with large motion amplitudes, the use of proton pencil beam scanning (PBS) can produce large dose errors. In this study, we assess under what circumstances PBS can be used to treat lung cancer patients who exhibit large tumor motion, based on the quantification of tumor motion and the dose interplay. MATERIAL AND METHODS: PBS plans were optimized on average 4DCT datasets using a beam-specific PTV method for 10 consecutive patients with locally advanced non-small-cell-lung-cancer (NSCLC) treated with proton therapy to 6660/180 cGy. End inhalation (CT0) and end exhalation (CT50) were selected as the two extreme scenarios to acquire the relative stopping power ratio difference (Δrsp) for a respiration cycle. The water equivalent difference (ΔWET) per radiological path was calculated from the surface of patient to the iCTV by integrating the Δrsp of each voxel. The magnitude of motion of voxels within the target follows a quasi-Gaussian distribution. A motion index (MI (>5mm WET)), defined as the percentage of target voxels with an absolute integral ΔWET larger than 5 mm, was adopted as a metric to characterize interplay. To simulate the treatment process, 4D dose was calculated by accumulating the spot dose on the corresponding respiration phase to the reference phase CT50 by deformable image registration based on spot timing and patient breathing phase. RESULTS: The study indicated that the magnitude of target underdose in a single fraction plan is proportional to the MI (p < .001), with larger motion equating to greater dose degradation and standard deviations. The target homogeneity, minimum, maximum and mean dose in the 4D dose accumulations of 37 fractions varied as a function of MI. CONCLUSIONS: This study demonstrated that MI can predict the level of dose degradation, which potentially serves as a clinical decision tool to assess whether lung cancer patients are potentially suitable to receive PBS treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Neoplasias Pulmonares/radioterapia , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Artefactos , Fraccionamiento de la Dosis de Radiación , Tomografía Computarizada Cuatridimensional , Humanos , Movimiento (Física) , Movimiento
14.
J Appl Clin Med Phys ; 16(6): 5678, 2015 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-26699580

RESUMEN

The purpose of this study is to determine whether organ sparing and target coverage can be simultaneously maintained for pencil beam scanning (PBS) proton therapy treatment of thoracic tumors in the presence of motion, stopping power uncertainties, and patient setup variations. Ten consecutive patients that were previously treated with proton therapy to 66.6/1.8 Gy (RBE) using double scattering (DS) were replanned with PBS. Minimum and maximum intensity images from 4D CT were used to introduce flexible smearing in the determination of the beam specific PTV (BSPTV). Datasets from eight 4D CT phases, using ± 3% uncertainty in stopping power and ± 3 mm uncertainty in patient setup in each direction, were used to create 8 × 12 × 10 = 960 PBS plans for the evaluation of 10 patients. Plans were normalized to provide identical coverage between DS and PBS. The average lung V20, V5, and mean doses were reduced from 29.0%, 35.0%, and 16.4 Gy with DS to 24.6%, 30.6%, and 14.1 Gy with PBS, respectively. The average heart V30 and V45 were reduced from 10.4% and 7.5% in DS to 8.1% and 5.4% for PBS, respectively. Furthermore, the maximum spinal cord, esophagus, and heart doses were decreased from 37.1 Gy, 71.7 Gy, and 69.2 Gy with DS to 31.3 Gy, 67.9 Gy, and 64.6 Gy with PBS. The conformity index (CI), homogeneity index (HI), and global maximal dose were improved from 3.2, 0.08, 77.4 Gy with DS to 2.8, 0.04, and 72.1 Gy with PBS. All differences are statistically significant, with p-values <0.05, with the exception of the heart V45 (p = 0.146). PBS with BSPTV achieves better organ sparing and improves target coverage using a repainting method for the treatment of thoracic tumors. Incorporating motion-related uncertainties is essential.


Asunto(s)
Tomografía Computarizada Cuatridimensional/métodos , Terapia de Protones/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Neoplasias Torácicas/diagnóstico por imagen , Neoplasias Torácicas/radioterapia , Tomografía Computarizada Cuatridimensional/estadística & datos numéricos , Humanos , Movimiento , Órganos en Riesgo , Terapia de Protones/estadística & datos numéricos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/estadística & datos numéricos , Incertidumbre
15.
Rev Sci Instrum ; 86(7): 074301, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26233396

RESUMEN

This article describes the design, construction, and properties of an anthropomorphic thorax phantom with a moving surrogate tumor. This novel phantom permits detection of dose both inside and outside a moving tumor and within the substitute lung tissue material. A 3D printer generated the thorax shell composed of a chest wall, spinal column, and posterior regions of the phantom. Images of a computed tomography scan of the thorax from a patient with lung cancer provided the template for the 3D printing. The plastic phantom is segmented into two materials representing the muscle and bones, and its geometry closely matches a patient. A surrogate spherical plastic tumor controlled by a 3D linear stage simulates a lung tumor's trajectory during normal breathing. Sawdust emulates the lung tissue in terms of average and distribution in Hounsfield numbers. The sawdust also provides a forgiving medium that permits tumor motion and sandwiching of radiochromic film inside the mobile surrogate plastic tumor for dosimetry. A custom cork casing shields the film and tumor and eliminates film bending during extended scans. The phantom, lung tissue surrogate, and radiochromic film are exposed to a seven field plan based on an ECLIPSE plan for 6 MV photons from a Trilogy machine delivering 230 cGy to the isocenter. The dose collected in a sagittal plane is compared to the calculated plan. Gamma analysis finds 8.8% and 5.5% gamma failure rates for measurements of large amplitude trajectory and static measurements relative to the large amplitude plan, respectively. These particular gamma analysis results were achieved using parameters of 3% dose and 3 mm, for regions receiving doses >150 cGy. The plan assumes a stationary detection grid unlike the moving radiochromic film and tissues. This difference was experimentally observed and motivated calculated dose distributions that incorporated the phase of the tumor periodic motion. These calculations modestly improve agreement between the measured and intended doses.


Asunto(s)
Tomografía Computarizada Cuatridimensional/instrumentación , Modelos Biológicos , Fantasmas de Imagen , Impresión Tridimensional , Radiometría/instrumentación , Tórax , Diseño de Equipo , Estudios de Factibilidad , Tomografía Computarizada Cuatridimensional/métodos , Humanos , Pulmón/diagnóstico por imagen , Neoplasias Pulmonares/diagnóstico por imagen , Movimiento (Física) , Fotones , Terapia de Protones/métodos , Radiografía Torácica/instrumentación , Radiografía Torácica/métodos , Radiometría/métodos
16.
Rev Sci Instrum ; 86(4): 044301, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25933872

RESUMEN

Radiation therapy depends on predictably and reliably delivering dose to tumors and sparing normal tissues. Protons with kinetic energy of a few hundred MeV can selectively deposit dose to deep seated tumors without an exit dose, unlike x-rays. The better dose distribution is attributed to a phenomenon known as the Bragg peak. The Bragg peak is due to relatively high energy deposition within a given distance or high Linear Energy Transfer (LET). In addition, biological response to radiation depends on the dose, dose rate, and localized energy deposition patterns or LET. At present, the LET can only be measured at a given fixed point and the LET spatial distribution can only be inferred from calculations. The goal of this study is to develop and test a method to measure LET over extended areas. Traditionally, radiochromic films are used to measure dose distribution but not for LET distribution. We report the first use of these films for measuring the spatial distribution of the LET deposited by protons. The radiochromic film sensitivity diminishes for large LET. A mathematical model correlating the film sensitivity and LET is presented to justify relating LET and radiochromic film relative sensitivity. Protons were directed parallel to radiochromic film sandwiched between solid water slabs. This study proposes the scaled-normalized difference (SND) between the Treatment Planning system (TPS) and measured dose as the metric describing the LET. The SND is correlated with a Monte Carlo (MC) calculation of the LET spatial distribution for a large range of SNDs. A polynomial fit between the SND and MC LET is generated for protons having a single range of 20 cm with narrow Bragg peak. Coefficients from these fitted polynomial fits were applied to measured proton dose distributions with a variety of ranges. An identical procedure was applied to the protons deposited from Spread Out Bragg Peak and modulated by 5 cm. Gamma analysis is a method for comparing the calculated LET with the LET measured using radiochromic film at the pixel level over extended areas. Failure rates using gamma analysis are calculated for areas in the dose distribution using parameters of 25% of MC LET and 3 mm. The processed dose distributions find 5%-10% failure rates for the narrow 12.5 and 15 cm proton ranges and 10%-15% for proton ranges of 15, 17.5, and 20 cm and modulated by 5 cm. It is found through gamma analysis that the measured proton energy deposition in radiochromic film and TPS can be used to determine LET. This modified film dosimetry provides an experimental areal LET measurement that can verify MC calculations, support LET point measurements, possibly enhance biologically based proton treatment planning, and determine the polymerization process within the radiochromic film.


Asunto(s)
Dosimetría por Película/instrumentación , Transferencia Lineal de Energía , Terapia de Protones/instrumentación , Método de Montecarlo
18.
Med Phys ; 39(4): 2147-55, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22482635

RESUMEN

PURPOSE: Quantitatively determine an optimum image analysis procedure to mitigate inhomogeneities within the EBT2 film and from scanning for accurate absolute dose measurement deposited by an external radiation therapy beam. Multichannel dosimetry procedures were conceived, described, and quantitatively tested against single and dual channel dosimetry. METHODS: A solid water(TM) block was placed on CT imaging and treatment tables in a configuration that avoids bulky compressive devices. CT markers helped register the CT to the treatment plan and the radiation dose distribution from the radiochromic film. The CT images were digitally rotated and resampled to match the spatial resolution of the scanned dosimetric distribution and treatment plan. The ECLIPSE treatment plan planes were digitally translated through digital triangulation of the treatment isocenter to the CT markers in the CT image. A 6 MV photon beam, conforming to the treatment plan, irradiated the EBT2 film sandwiched between solid water(TM) slabs. The exposed radiochromic film images were rotated and translated to the CT images using coincident markers in the CT image that are associated with "tattoos" marked on the radiochromic film. The exposed radiochromic film gray-levels from a flatbed scanner in reflection mode were converted to dose using calibration films. The test dose distribution was scanned and averaged six times to reduce temporal noise. This study generated dose distributions using the red channel alone, green channel alone, ratio of the red to blue channel, ratio of the green to blue channel, a hybrid approach combining the green to blue ratio for higher doses (>80 cGy) with the red to blue ratio (<80 cGy), multichannel averaging and optimized autonomous multichannel correction. Single channel, multichannel, and channel ratio methods for processing the exposed radiochromic film were compared to the treatment plan via gamma analysis. The ellipsoidal decision surface was defined by its axes of 3% of the maximum dose and 3 mm in the horizontal and vertical directions. RESULTS: The multichannel dosimetry procedures provided excellent agreement with calculation of the dose distribution as determined by the gamma analysis. The green channel mostly performed as well or better than the red channel. The green to blue channel ratio for doses when combined with red to blue ratio ("Hybrid") achieved a high level performance. In addition, new registration procedures were developed and tested for aiding the comparison of calculated and experimentally determined dose distributions. CONCLUSIONS: This study described, developed, and tested new processing methods for reducing inaccuracies in absolute dose determination due to inhomogeneities within the film and from scanning. This study found better performance using optimized multichannel following averaging of all color channels. Combining the channel ratios in a hybrid approach also achieved high performance. Averaging the test films reduced temporal noise that severely degraded the blue channel. This methodology avoided using cumbersome, registered correction matrices. Novel registration and digital rotation of CT images enabled quantitative testing and helped improve contact between the radiochromic film and phantom.


Asunto(s)
Dosimetría por Película , Relación Dosis-Respuesta en la Radiación , Diseño de Equipo , Análisis de Falla de Equipo , Dosis de Radiación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
Phys Med Biol ; 57(1): 155-72, 2012 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-22127351

RESUMEN

The purpose of this work is to investigate possible smaller, less-dense fiducial markers implantable into the prostate for target localization and patient repositioning verification in an on-board kV-kV imaging system on a proton gantry. The experiments used a pelvic phantom and a variety of commercially available fiducial markers: CIVCO carbon marker of ϕ; 1 × 3 mm, gold seed markers of ϕ; 0.8 × 3 mm and ϕ; 1.2 × 3 mm, and IBA Visicoil helical gold linear markers in diameters of 0.35, 0.50, 0.75 and 1.15 mm. Two orthogonal on-board kV imagers were arranged for digital radiographic imaging of the phantom through the lateral and anterior-posterior directions. The contrast-to-noise ratio (CNR) for a given marker was calculated and used as a quantitative measure of its visibility. The patient entrance skin exposure (ESE) was measured and parameterized for kVp, mAs and source-to-surface distance. The ratio of CNR to ESE was first introduced to characterize the efficiency for imaging a marker using a given x-ray technique in order to optimize the marker's visibility and simultaneously minimize the x-ray imaging dose. If CNR > 2, which corresponds to a significance p < 0.05, is required for acceptable visibility, the carbon marker and the smallest Visicoil marker are not suitable for imaging through dense bone but the others are capable of being employed in the clinic. It is predicted that other markers in development should have a greater thickness than equivalent of 0.14 mm thick gold in order to produce the acceptable visibility in the lateral kV imaging. The linear Visicoil marker of ϕ; 0.50 × 5 mm is most suitable for kV imaging in the prostate for proton therapy as it induces the least proton dose perturbation amongst the acceptable markers. An optimal range of 120-130 kVp and 40-80 mAs is determined using the maximal CNR/ESE and CNR > 2 for laterally imaging this marker in the prostate.


Asunto(s)
Marcadores Fiduciales , Próstata/diagnóstico por imagen , Tomografía Computarizada por Rayos X/normas , Carbono , Oro , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Terapia de Protones , Dosis de Radiación , Relación Señal-Ruido , Tomografía Computarizada por Rayos X/instrumentación , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA