Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-32948521

RESUMEN

Metagenomics is an exciting alternative to seek carbohydrate-active enzymes from a range of sources. Typically, metagenomics reveals dozens of putative catalysts that require functional characterization for further application in industrial processes. High-throughput screening methods compatible with adequate natural substrates are crucial for an accurate functional elucidation of substrate preferences. Based on DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) analysis of enzymatic-reaction products, we generated product profiles to consequently infer substrate cleavage positions, resulting in the generation of enzymatic-degradation maps. Product profiles were produced in high throughput for arabinoxylan (AX)-active enzymes belonging to the glycoside hydrolase families GH43 (subfamilies 2 [MG432], 7 [MG437], and 28 [MG4328]) and GH8 (MG8) starting from 12 (arabino)xylo-oligosaccharides. These enzymes were discovered through functional metagenomic studies of feces from the North American beaver (Castor canadensis). This work shows how enzyme loading alters the product profiles of all enzymes studied and gives insight into AX degradation patterns, revealing sequential substrate preferences of AX-active enzymes.IMPORTANCE Arabinoxylan is mainly found in the hemicellulosic fractions of rice straw, corn cobs, and rice husk. Converting arabinoxylan into (arabino)xylo-oligosaccharides as added-value products that can be applied in food, feed, and cosmetics presents a sustainable and economic alternative for the biorefinery industries. Efficient and profitable AX degradation requires a set of enzymes with particular characteristics. Therefore, enzyme discovery and the study of substrate preferences are of utmost importance. Beavers, as consumers of woody biomass, are a promising source of a repertoire of enzymes able to deconstruct hemicelluloses into soluble oligosaccharides. High-throughput analysis of the oligosaccharide profiles produced by these enzymes will assist in the selection of the most appropriate enzymes for the biorefinery.


Asunto(s)
Bacterias/enzimología , Heces/microbiología , Metagenoma , Roedores/microbiología , Xilanos/metabolismo , Animales , Ensayos Analíticos de Alto Rendimiento , Análisis de Secuencia de ADN
2.
Appl Microbiol Biotechnol ; 102(23): 10091-10102, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30267127

RESUMEN

Carbohydrate-active enzyme discovery is often not accompanied by experimental validation, demonstrating the need for techniques to analyze substrate specificities of carbohydrate-active enzymes in an efficient manner. DNA sequencer-aided fluorophore-assisted carbohydrate electrophoresis (DSA-FACE) is utmost appropriate for the analysis of glycoside hydrolases that have complex substrate specificities. DSA-FACE is demonstrated here to be a highly convenient method for the precise identification of the specificity of different α-L-arabinofuranosidases for (arabino)xylo-oligosaccharides ((A)XOS). The method was validated with two α-L-arabinofuranosidases (EC 3.2.1.55) with well-known specificity, specifically a GH62 α-L-arabinofuranosidase from Aspergillus nidulans (AnAbf62A-m2,3) and a GH43 α-L-arabinofuranosidase from Bifidobacterium adolescentis (BaAXH-d3). Subsequently, application of DSA-FACE revealed the AXOS specificity of two α-L-arabinofuranosidases with previously unknown AXOS specificities. PaAbf62A, a GH62 α-L-arabinofuranosidase from Podospora anserina strain S mat+, was shown to target the O-2 and the O-3 arabinofuranosyl monomers as side chain from mono-substituted ß-D-xylosyl residues, whereas a GH43 α-L-arabinofuranosidase from a metagenomic sample (AGphAbf43) only removes an arabinofuranosyl monomer from the smallest AXOS tested. DSA-FACE excels ionic chromatography in terms of detection limit for (A)XOS (picomolar sensitivity), hands-on and analysis time, and the analysis of the degree of polymerization and binding site of the arabinofuranosyl substituent.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Análisis de Secuencia de ADN , Aspergillus nidulans/enzimología , Bifidobacterium adolescentis/enzimología , Carbohidratos/análisis , Electroforesis , Colorantes Fluorescentes , Límite de Detección , Metagenómica , Podospora/enzimología , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA