Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Mol Neurobiol ; 42(1): 225-242, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33839994

RESUMEN

Phenelzine (PLZ) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. This multifaceted drug has a number of pharmacological and neurochemical effects in addition to inhibition of MAO, and findings on these effects have contributed to a body of evidence indicating that PLZ also has neuroprotective/neurorescue properties. These attributes are reviewed in this paper and include catabolism to the active metabolite ß-phenylethylidenehydrazine (PEH) and effects of PLZ and PEH on the GABA-glutamate balance in brain, sequestration of reactive aldehydes, and inhibition of primary amine oxidase. Also discussed are the encouraging findings of the effects of PLZ in animal models of stroke, spinal cord injury, traumatic brain injury, and multiple sclerosis, as well other actions such as reduction of nitrative stress, reduction of the effects of a toxin on dopaminergic neurons, potential anticonvulsant actions, and effects on brain-derived neurotrophic factor, neural cell adhesion molecules, an anti-apoptotic factor, and brain levels of ornithine and N-acetylamino acids.


Asunto(s)
Antidepresivos , Inhibidores de la Monoaminooxidasa , Fármacos Neuroprotectores , Fenelzina , Animales , Antidepresivos/farmacología , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/farmacología , Fármacos Neuroprotectores/farmacología , Fenelzina/farmacología , Ratas , Ratas Sprague-Dawley
2.
Handb Clin Neurol ; 183: 221-234, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34389119

RESUMEN

Autoimmune encephalitis often produces signs and symptoms that appear to be at the interface between neurology and psychiatry. Since psychiatric symptoms are often prominent, patients are often first seen in a psychiatric setting. Therefore it is important that psychiatrists, as well as neurologists, be able to recognize autoimmune encephalitis, a task that is often difficult. Early diagnosis of autoimmune encephalitis is crucial as this will usually result in a better outcome for the patient. This chapter provides an introduction to various autoimmune encephalitides and describes their pathophysiology and the possible associated neuropsychiatric, neuropsychological (cognitive), and neurological (sensory-motor) signs and symptoms. This chapter also reviews the possible treatments of these associated signs and symptoms.


Asunto(s)
Encefalitis , Enfermedad de Hashimoto , Autoanticuerpos , Emociones , Encefalitis/diagnóstico , Enfermedad de Hashimoto/diagnóstico , Humanos
3.
Artículo en Inglés | MEDLINE | ID: mdl-33316333

RESUMEN

In recent years, there has been a great deal of interest in the effects of calorie reduction (calorie restriction) and fasting on depression. In the current paper, we have reviewed the literature in this area, with discussion of the possible neurobiological mechanisms involved in calorie restriction and intermittent fasting. Factors which may play a role in the effects of these dietary manipulations on health include changes involving free fatty acids, ketone bodies, neurotransmitters, cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), cytokines, orexin, ghrelin, leptin, reactive oxygen species and autophagy. Several of these factors are potential contributors to improving symptoms of depression. Challenges encountered in research on calorie restriction and intermittent fasting are also discussed. Although much is now known about the acute effects of calorie restriction and intermittent fasting, further long term clinical studies are warranted.


Asunto(s)
Restricción Calórica , Depresión/dietoterapia , Ayuno/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/sangre , Citocinas/sangre , Humanos , Cuerpos Cetónicos , Orexinas
4.
Ther Adv Psychopharmacol ; 10: 2045125320916657, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32440333

RESUMEN

Ketamine, a drug introduced in the 1960s as an anesthetic agent and still used for that purpose, has garnered marked interest over the past two decades as an emerging treatment for major depressive disorder. With increasing evidence of its efficacy in treatment-resistant depression and its potential anti-suicidal action, a great deal of investigation has been conducted on elucidating ketamine's effects on the brain. Of particular interest and therapeutic potential is the ability of ketamine to exert rapid antidepressant properties as early as several hours after administration. This is in stark contrast to the delayed effects observed with traditional antidepressants, often requiring several weeks of therapy for a clinical response. Furthermore, ketamine appears to have a unique mechanism of action involving glutamate modulation via actions at the N-methyl-D-aspartate (NMDA) and α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, as well as downstream activation of brain-derived neurotrophic factor (BDNF) and mechanistic target of rapamycin (mTOR) signaling pathways to potentiate synaptic plasticity. This paper provides a brief overview of ketamine with regard to pharmacology/pharmacokinetics, toxicology, the current state of clinical trials on depression, postulated antidepressant mechanisms and potential biomarkers (biochemical, inflammatory, metabolic, neuroimaging sleep-related and cognitive) for predicting response to and/or monitoring of therapeutic outcome with ketamine.

5.
Acta Neuropsychiatr ; 32(4): 177-185, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31791436

RESUMEN

The past decade has seen a surge of reports and investigations into cases of autoimmune-mediated encephalitis. The increasing recognition of these disorders is especially of relevance to the fields of neurology and psychiatry. Autoimmune encephalitis involves antibodies against synaptic receptors, neuronal cell surface proteins and intracellular targets. These disorders feature prominent symptoms of cognitive impairment and behavioural changes, often associated with the presence of seizures. Early in the clinical course, autoimmune encephalitis may manifest as psychiatric symptoms of psychosis and involve psychiatry as an initial point of contact. Although commonly associated with malignancy, these disorders can present in the absence of an inciting neoplasm. The identification of autoimmune encephalitis is of clinical importance as a large proportion of individuals experience a response to immunotherapy. This review focuses on the current state of knowledge on n-methyl-d-aspartate (NMDA) receptor-associated encephalitis and limbic encephalitis, the latter predominantly involving antibodies against the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, the γ-aminobutyric acid (GABA)B receptor and leucine-rich glioma-inactivated 1 (LGI1) protein. In addition, we briefly describe anti-dopamine D2 receptor encephalitis. A summary of the literature will focus on common clinical presentations and course, diagnostic approaches and response to treatment. Since a substantial proportion of patients with autoimmune encephalitis exhibit symptoms of psychosis, the relevance of this disorder to theories of psychosis and schizophrenia will also be discussed.


Asunto(s)
Síntomas Afectivos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Encefalitis/inmunología , Trastornos Mentales/inmunología , Neuroinmunomodulación/inmunología , Autoanticuerpos/sangre , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/terapia , Encéfalo/inmunología , Encefalitis/diagnóstico , Encefalitis/terapia , Humanos , Pronóstico , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/inmunología , Trastornos Psicóticos/terapia , Receptores de Neurotransmisores/inmunología , Esquizofrenia/diagnóstico , Esquizofrenia/inmunología , Esquizofrenia/terapia
6.
Chem Biol Interact ; 304: 139-147, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30857888

RESUMEN

Phenelzine (ß-phenylethylhydrazine) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. It possesses a number of important pharmacological properties which may alter the effects of oxidative stress. After conducting a comprehensive literature search, the authors of this review paper aim to provide an overview and discussion of the mechanisms by which phenelzine may attenuate oxidative stress. It inhibits γ-aminobutyric acid (GABA) transaminase, resulting in elevated brain GABA levels, inhibits both MAO and primary amine oxidase and, due to its hydrazine-containing structure, reacts chemically to sequester a number of reactive aldehydes (e.g. acrolein and 4-hydroxy-2-nonenal) proposed to be implicated in oxidative stress in a number of neurodegenerative disorders. Phenelzine is unusual in that it is both an inhibitor of and a substrate for MAO, the latter action producing at least one active metabolite, ß-phenylethylidenehydrazine (PEH). This metabolite inhibits GABA transaminase, is a very weak inhibitor of MAO but a strong inhibitor of primary amine oxidase, and sequesters aldehydes. Phenelzine may ameliorate the effects of oxidative stress by reducing formation of reactive metabolites (aldehydes, hydrogen peroxide, ammonia/ammonia derivatives) produced by the interaction of MAO with biogenic amines, by sequestering various other reactive aldehydes and by inhibiting primary amine oxidase. In PC12 cells treated with the neurotoxin MPP+, phenelzine has been reported to reduce several adverse effects of MPP+. It has also been reported to reduce lipid peroxidative damage induced in plasma and platelet proteins by peroxynitrite. In animal models, phenelzine has a neuroprotective effect in global ischemia and in cortical impact traumatic brain injury. Recent studies reported in the literature on the possible involvement of acrolein in spinal cord injury and multiple sclerosis indicate that phenelzine can attenuate adverse effects of acrolein in these models. Results from studies in our laboratories on effects of phenelzine and PEH on primary amine oxidase (which catalyzes formation of toxic aldehydes and is overexpressed in Alzheimer's disease), on sequestration of the toxic aldehyde acrolein, and on reduction of acrolein-induced toxicity in mouse cortical neurons are also reported.


Asunto(s)
Antidepresivos/farmacología , Depuradores de Radicales Libres/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Monoaminooxidasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenelzina/farmacología , Animales , Antidepresivos/química , Depuradores de Radicales Libres/química , Humanos , Estructura Molecular , Inhibidores de la Monoaminooxidasa/química , Fenelzina/química
7.
Artículo en Inglés | MEDLINE | ID: mdl-24607770

RESUMEN

Phenelzine, a non-selective irreversible inhibitor of monoamine oxidase (MAO), has been used in the treatment of depression and anxiety disorders for several decades. It is a unique inhibitor of MAO as it is also a substrate for MAO, with one of the metabolites being ß-phenylethylidenehydrazine (PEH), and it also inhibits several transaminases (e.g. GABA transaminase) in the brain when administered i.p. to rats. Administration of either phenelzine or PEH to rats has been reported to produce dramatic increases in rat brain levels of GABA and alanine while reducing levels of glutamine; these effects are abolished for phenelzine, but not for PEH, when the animals are pre-treated with another MAO inhibitor, suggesting that they are mediated by the MAO-catalyzed formation of PEH from phenelzine. In the present report, we have found that phenelzine and E- and Z-geometric isomers of PEH significantly increased rat whole brain concentrations of L-tyrosine. In a time-response study, acute administration of phenelzine, E-PEH and Z-PEH (30 mg/kg i.p.) elevated rat whole brain L-tyrosine levels at 3 and 6h following injection, reaching approximately 265-305% of vehicle-treated controls at 3h. To determine whether the effect on L-tyrosine is MAO-dependent, animals were pre-treated with the non-selective MAO inhibitor tranylcypromine (1mg/kg i.p.) prior to administration of phenelzine, racemic PEH or vehicle controls. This pre-treatment reversed the effects of phenelzine, but not of PEH, on brain L-tyrosine levels, suggesting that the tyrosine-elevating property of phenelzine is largely the result of its active metabolite PEH. These results are discussed in relation to possible therapeutic applications of these drugs.


Asunto(s)
Encéfalo/efectos de los fármacos , Hidrazinas/farmacología , Inhibidores de la Monoaminooxidasa/farmacología , Fenelzina/farmacología , Tirosina/metabolismo , Análisis de Varianza , Animales , Técnicas Electroquímicas , Metacrilatos , Ratas , Factores de Tiempo
8.
Artículo en Inglés | MEDLINE | ID: mdl-23410524

RESUMEN

Although not used as extensively as other antidepressants for the treatment of depression, the monoamine oxidase (MAO) inhibitors continue to hold a niche in psychiatry and to have a relatively broad spectrum with regard to treatment of psychiatric and neurological disorders. Experimental and clinical research on MAO inhibitors has been expanding in the past few years, primarily because of exciting findings indicating that these drugs have neuroprotective properties (often independently of their ability to inhibit MAO). The non-selective and irreversible MAO inhibitors tranylcypromine (TCP) and phenelzine (PLZ) have demonstrated neuroprotective properties in numerous studies targeting elements of apoptotic cascades and neurogenesis. l-Deprenyl and rasagiline, both selective MAO-B inhibitors, are used in the management of Parkinson's disease, but these drugs may be useful in the treatment of other neurodegenerative disorders given that they demonstrate neuroprotective/neurorescue properties in a wide variety of models in vitro and in vivo. Although the focus of studies on the involvement of MAO inhibitors in neuroprotection has been on MAO-B inhibitors, there is a growing body of evidence demonstrating that MAO-A inhibitors may also have neuroprotective properties. In addition to MAO inhibition, PLZ also inhibits primary amine oxidase (PrAO), an enzyme implicated in the etiology of Alzheimer's disease, diabetes and cardiovascular disease. These multifaceted aspects of amine oxidase inhibitors and some of their metabolites are reviewed herein.


Asunto(s)
Depresión/tratamiento farmacológico , Trastornos Mentales/tratamiento farmacológico , Inhibidores de la Monoaminooxidasa/uso terapéutico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Animales , Humanos
9.
J Neural Transm (Vienna) ; 120(6): 987-96, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23392617

RESUMEN

Phenelzine is a monoamine oxidase (MAO) inhibitor used in treatment of depression and anxiety disorders. It also elevates brain levels of γ-aminobutyric acid (GABA) and inhibits primary amine oxidase (PrAO), an enzyme whose activity and/or expression has been reported to be increased in diabetes mellitus, Alzheimer's disease and cardiovascular disorders. Phenelzine is not only an inhibitor of, but also a substrate for, MAO and it has been suggested that an active metabolite, namely ß-phenylethylidenehydrazine (PEH), is responsible for phenelzine's effects on amino acids. PEH is also a strong inhibitor of PrAO but has weak effects on MAO. PEH has a double bond and can thus exist as (E)- and (Z)-geometric isomers, but to date the two isomers have not been compared with regard to their neurochemical effects. We have investigated the effects of phenelzine, (E)- and (Z)-PEH on rat whole brain levels of amino acids, biogenic amine neurotransmitters and methylamine (an endogenous substrate of PrAO). Under the conditions used in the study, (E)- and (Z)-PEH appear to be equivalent in their neurochemical properties. Both PEH isomers and phenelzine produced marked increases in rat brain levels of GABA and alanine while decreasing brain levels of glutamine. Phenelzine increased brain levels of biogenic amine neurotransmitters (noradrenaline, dopamine and serotonin), whereas neither PEH isomer altered levels of these neurotransmitters to a considerable extent. All three drugs significantly increased rat brain levels of methylamine, with (E)- and (Z)-PEH causing a greater increase than phenelzine. These results are discussed in relation to the possible therapeutic applications of these drugs.


Asunto(s)
Aminoácidos/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología , Hidrazinas/farmacología , Metilaminas/metabolismo , Neurotransmisores/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Técnicas Electroquímicas , Cromatografía de Gases y Espectrometría de Masas , Isomerismo , Masculino , Morfolinas/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
10.
J Cogn Neurosci ; 24(5): 1233-52, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22332805

RESUMEN

Traditionally, emotional stimuli have been thought to be automatically processed via a bottom-up automatic "capture of attention" mechanism. Recently, this view has been challenged by evidence that emotion processing depends on the availability of attentional resources. Although these two views are not mutually exclusive, direct evidence reconciling them is lacking. One limitation of previous investigations supporting the traditional or competing views is that they have not systematically investigated the impact of emotional charge of task-irrelevant distraction in conjunction with manipulations of attentional demands. Using event-related fMRI, we investigated the nature of emotion-cognition interactions in a perceptual discrimination task with emotional distraction by manipulating both the emotional charge of the distracting information and the demands of the main task. Our findings show that emotion processing is both automatic and modulated by attention, but emotion and attention were only found to interact when finer assessments of emotional charge (comparison of most vs. least emotional conditions) were considered along with an effective manipulation of processing load (high vs. low). The study also identified brain regions reflecting the detrimental impact of emotional distraction on performance as well as regions involved in coping with such distraction. Activity in the dorsomedial pFC and ventrolateral pFC was linked to a detrimental impact of emotional distraction, whereas the dorsal ACC and lateral occipital cortex were involved in helping with emotional distraction. These findings demonstrate that task-irrelevant emotion processing is subjective to both the emotional content of distraction and the level of attentional demand.


Asunto(s)
Síntomas Afectivos/fisiopatología , Atención/fisiología , Encéfalo/irrigación sanguínea , Discriminación en Psicología/fisiología , Emociones/fisiología , Adulto , Análisis de Varianza , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Oxígeno , Estimulación Luminosa , Tiempo de Reacción , Percepción Visual/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA