RESUMEN
In this review, we address the interplay between the complement system and host microbiomes in health and disease, focussing on oral bacteria known to contribute to homeostasis or to promote dysbiosis associated with dental caries and periodontal diseases. Host proteins modulating complement activities in the oral environment and expression profiles of complement proteins in oral tissues were described. In addition, we highlight a sub-set of bacterial proteins involved in complement evasion and/or dysregulation previously characterized in pathogenic species (or strains), but further conserved among prototypical commensal species of the oral microbiome. Potential roles of these proteins in host-microbiome homeostasis and in the emergence of commensal strain lineages with increased virulence were also addressed. Finally, we provide examples of how commensal bacteria might exploit the complement system in competitive or cooperative interactions within the complex microbial communities of oral biofilms. These issues highlight the need for studies investigating the effects of the complement system on bacterial behaviour and competitiveness during their complex interactions within oral and extra-oral host sites.
Asunto(s)
Caries Dental , Microbiota , Humanos , Microbiota/fisiología , Biopelículas , SimbiosisRESUMEN
Bacterial surface proteins assembled into amyloids contribute to biofilm formation and host immune evasion. Streptococcus sanguinis, a pioneer colonizer of teeth commonly involved in cardiovascular infections, expresses about thirty-three proteins anchored to the cell wall by sortase A. Here, we characterized the production of amyloid in S. sanguinis strains differing in biofilm and immune evasion phenotypes and investigated the role of sortase A in amyloidogenesis. Amyloid was identified in biofilms formed by nine strains, using Congo red (CR) staining and cross-polarized light microscopy. Additionally, EGCG, an amyloid inhibitor, impaired biofilm maturation in a strain-specific fashion. The amounts of amyloid-like components quantified in culture fluids of nine strains using thioflavin T and fluorimetry negatively correlated with bacterial binding to complement-activating proteins (SAP, C1q), C3b deposition and rates of opsonophagocytosis in PMNs, implying amyloid production in immune evasion. The deletion of the sortase A gene (srtA) in strain SK36 compromised amyloid production and sucrose-independent biofilm maturation. The srtA mutant further showed increased susceptibility to C3b deposition and altered interactions with PMNs as well as reduced persistence in human blood. These findings highlight the contribution of amyloids to biofilm formation and host immune evasion in S. sanguinis strains, further indicating the participation of sortase A substrates in amyloidogenesis.
Asunto(s)
Evasión Inmune , Streptococcus sanguis , Humanos , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo , Amiloide/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , BiopelículasRESUMEN
Streptococcus sanguinis is a ubiquitous commensal species of the oral cavity commonly involved as an opportunistic pathogen in cardiovascular infections. In this study, we investigated the functions of endopeptidase O (PepO) and a C3-degrading protease (CppA) in the systemic virulence of S. sanguinis. Isogenic mutants of pepO and cppA obtained in strain SK36 showed increased susceptibility to C3b deposition and to opsonophagocytosis by human polymorphonuclear neutrophils (PMN). These mutants differ, however, in their profiles of binding to serum amyloid P component (SAP) and C1q, whereas both showed reduced interaction with C4b-binding protein (C4BP) and/or factor H (FH) regulators as compared to SK36. The two mutants showed defects in ex vivo persistence in human blood, serum-mediated invasion of HCAEC endothelial cells, and virulence in a Galleria mellonella infection model. The transcriptional activities of pepO and cppA, assessed by RT-qPCR in nine wild-type strains, further indicated strain-specific profiles of pepO/cppA expression. Moreover, non-conserved amino acid substitutions were detected among the strains, mostly in CppA. Phylogenetic comparisons with homologues of streptococcal species of the oral and oropharyngeal sites suggested that S. sanguinis PepO and CppA have independent ancestralities. Thus, this study showed that PepO and CppA are complement evasion proteins expressed by S. sanguinis in a strain-specific manner, which are required for multiple functions associated with cardiovascular virulence.
Asunto(s)
Células Endoteliales , Streptococcus sanguis , Humanos , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo , Virulencia , Células Endoteliales/metabolismo , Filogenia , Proteínas del Sistema Complemento , Proteínas Bacterianas/metabolismoRESUMEN
Streptococcus sanguinis is a pioneer commensal species of dental biofilms, abundant in different oral sites and commonly associated with opportunist cardiovascular infections. In this study, we addressed intra-species functional diversity to better understand the S. sanguinis commensal and pathogenic lifestyles. Multiple phenotypes were screened in nine strains isolated from dental biofilms or from the bloodstream to identify conserved and strain-specific functions involved in biofilm formation and/or persistence in oral and cardiovascular tissues. Strain phenotypes of biofilm maturation were independent of biofilm initiation phenotypes, and significantly influenced by human saliva and by aggregation mediated by sucrose-derived exopolysaccharides (EPS). The production of H2O2 was conserved in most strains, and consistent with variations in extracellular DNA (eDNA) production observed in few strains. The diversity in complement C3b deposition correlated with the rates of opsonophagocytosis by human PMN and was influenced by culture medium and sucrose-derived EPS in a strain-specific fashion. Differences in C3b deposition correlated with strain binding to recognition proteins of the classical pathway, C1q and serum amyloid protein (SAP). Importantly, differences in strain invasiveness into primary human coronary artery endothelial cells (HCAEC) were significantly associated with C3b binding, and in a lesser extent, with binding to host glycoproteins (such as fibrinogen, plasminogen, fibronectin, and collagen). Thus, by identifying conserved and strain-specific phenotypes involved in host persistence and systemic virulence, this study indicates potential new functions involved in systemic virulence and highlights the need of including a wider panel of strains in molecular studies to understand S. sanguinis biology.
RESUMEN
Introduction. Streptococcus mutans, a common species of the oral microbiome, expresses virulence genes promoting cariogenic dental biofilms, persistence in the bloodstream and cardiovascular infections.Gap statement. Virulence gene expression is variable among S. mutans strains and controlled by the transcription regulatory systems VicRK and CovR.Aim. This study investigates polymorphisms in the vicRK and covR loci in S. mutans strains isolated from the oral cavity or from the bloodstream, which were shown to differ in expression of covR, vicRK and downstream genes.Methodology. The transcriptional activities of covR, vicR and vicK were compared by RT-qPCR between blood and oral strains after exposure to human serum. PCR-amplified promoter and/or coding regions of covR and vicRK of 18 strains (11 oral and 7 blood) were sequenced and compared to the reference strain UA159.Results. Serum exposure significantly reduced covR and vicR/K transcript levels in most strains (P<0.05), but reductions were higher in oral than in blood strains. Single-nucleotide polymorphisms (SNPs) were detected in covR regulatory and coding regions, but SNPs affecting the CovR effector domain were only present in two blood strains. Although vicR was highly conserved, vicK showed several SNPs, and SNPs affecting VicK regions important for autokinase activity were found in three blood strains.Conclusions. This study reveals transcriptional and structural diversity in covR and vicR/K, and identifies polymorphisms of functional relevance in blood strains, indicating that covR and vicRK might be important loci for S. mutans adaptation to host selective pressures associated with virulence diversity.
Asunto(s)
Infecciones Cardiovasculares , Infecciones Estreptocócicas/microbiología , Streptococcus mutans , Virulencia , Proteínas Bacterianas/genética , Infecciones Cardiovasculares/microbiología , Regulación Bacteriana de la Expresión Génica , Humanos , Streptococcus mutans/genética , Streptococcus mutans/patogenicidad , Virulencia/genéticaRESUMEN
Streptococcus mutans, a cariogenic species, is often associated with cardiovascular infections. Systemic virulence of specific S. mutans serotypes has been associated with the expression of the collagen- and laminin-binding protein Cnm, which is transcriptionally regulated by VicRK and CovR. In this study, we characterized a VicRK- and CovR-regulated gene, pepO, coding for a conserved endopeptidase. Transcriptional and protein analyses revealed that pepO is highly expressed in S. mutans strains resistant to complement immunity (blood isolates) compared to oral isolates. Gel mobility assay, transcriptional, and Western blot analyses revealed that pepO is repressed by VicR and induced by CovR. Deletion of pepO in the Cnm+ strain OMZ175 (OMZpepO) or in the Cnm- UA159 (UApepO) led to an increased susceptibility to C3b deposition, and to low binding to complement proteins C1q and C4BP. Additionally, pepO mutants showed diminished ex vivo survival in human blood and impaired capacity to kill G. mellonella larvae. Inactivation of cnm in OMZ175 (OMZcnm) resulted in increased resistance to C3b deposition and unaltered blood survival, although both pepO and cnm mutants displayed attenuated virulence in G. mellonella. Unlike OMZcnm, OMZpepO could invade HCAEC endothelial cells. Supporting these phenotypes, recombinant proteins rPepO and rCnmA showed specific profiles of binding to C1q, C4BP, and to other plasma (plasminogen, fibronectin) and extracellular matrix proteins (type I collagen, laminin). Therefore this study identifies a novel VicRK/CovR-target required for immune evasion and host persistence, pepO, expanding the roles of VicRK and CovR in regulating S. mutans virulence.
Asunto(s)
Proteínas Bacterianas/genética , Endopeptidasas/genética , Streptococcus mutans/genética , Streptococcus mutans/patogenicidad , Factores de Virulencia/genética , Animales , Células Cultivadas , Complemento C3b/inmunología , Células Endoteliales/inmunología , Células Endoteliales/microbiología , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Humanos , Evasión Inmune , Larva/microbiología , Mariposas Nocturnas/microbiología , Streptococcus mutans/inmunología , VirulenciaRESUMEN
PURPOSE: Fatty acid synthase (FASN), the multifunctional enzyme responsible for endogenous fatty acid synthesis, is highly expressed and associated with poor prognosis in several human cancers, including melanoma. Our group has previously shown that pharmacological inhibition of FASN with orlistat decreases proliferation, promotes apoptosis, and reduces the metastatic spread of B16-F10 cells in experimental models of melanoma. While most of the orlistat antitumor properties seem to be closely related to direct effects on malignant cells, its impact on the host immune system is still unknown. METHODS: The effects of orlistat on the phenotype and activation status of infiltrating leukocytes in primary tumors and metastatic lymph nodes were assessed using a model of spontaneous melanoma metastasis (B16-F10 cells/C57BL/6 mice). Cells from the primary tumors and lymph nodes were mechanically dissociated and immune cells phenotyped by flow cytometry. The expression of IL-12p35, IL-12p40, and inducible nitric oxide synthase (iNOS) was analyzed by qRT-PCR and production of nitrite (NO2-) evaluated in serum samples with the Griess method. RESULTS: Orlistat-treated mice exhibited a 25% reduction in the number of mediastinal lymph node metastases (mean 3.96 ± 0.78, 95% CI 3.63-4.28) compared to the controls (mean 5.7 ± 1.72; 95% CI 5.01-6.43). The drug elicited an antitumor immune response against experimental melanomas by increasing maturation of intratumoral dendritic cells (DC), stimulating the expression of cytotoxicity markers in CD8 T lymphocytes and natural killer (NK) cells, as well as reducing regulatory T cells (Tregs). Moreover, the orlistat-treatment increased serum levels of nitric oxide (NO) concentrations. CONCLUSION: Taken together, these findings suggest that orlistat supports an antitumor response against experimental melanomas by increasing CD80/CD81-positive and IL-12-positive DC populations, granzyme b/NKG2D-positive NK populations, and perforin/granzyme b-positive CD8 T lymphocytes as well as reducing Tregs counts within experimental melanomas.
Asunto(s)
Antineoplásicos/farmacología , Metástasis Linfática/tratamiento farmacológico , Melanoma Experimental/tratamiento farmacológico , Orlistat/farmacología , Animales , Apoptosis/efectos de los fármacos , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Ácido Graso Sintasas/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Masculino , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismoRESUMEN
S. mitis is an abundant member of the commensal microbiota of the oral cavity and pharynx, which has the potential to promote systemic infections. By analyzing a collection of S. mitis strains isolated from the oral cavity at commensal states or from systemic infections (blood strains), we established that S. mitis ubiquitously express the surface immunodominant protein, PcsB (also called GbpB), required for binding to sucrose-derived exopolysaccharides (EPS). Immuno dot blot assays with anti-PcsB antibodies and RT-qPCR transcription analyses revealed strain-specific profiles of PcsB production associated with diversity in pcsB transcriptional activities. Additionally, blood strains showed significantly higher levels of PcsB expression compared to commensal isolates. Because Streptococcus mutans co-colonizes S. mitis dental biofilms, and secretes glucosyltransferases (GtfB/C/D) for the synthesis of highly insoluble EPS from sucrose, profiles of S. mitis binding to EPS, biofilm formation and evasion of the complement system were assessed in sucrose-containing BHI medium supplemented or not with filter-sterilized S. mutans culture supernatants. These analyses showed significant S. mitis binding to EPS and biofilm formation in the presence of S. mutans supernatants supplemented with sucrose, compared to BHI or BHI-sucrose medium. In addition, these phenotypes were abolished if strains were grown in culture supernatants of a gtfBCD-defective S. mutans mutant. Importantly, GtfB/C/D-associated phenotypes were enhanced in high PcsB-expressing strains, compared to low PcsB producers. Increased PcsB expression was further correlated with increased resistance to deposition of C3b/iC3b of the complement system after exposure to human serum, when strains were previously grown in the presence of S. mutans supernatants. Finally, analyses of PcsB polymorphisms and bioinformatic prediction of epitopes with significant binding to MHC class II alleles revealed that blood isolates harbor PcsB polymorphisms in its functionally conserved CHAP-domain, suggesting antigenic variation. These findings reveal important roles of PcsB in S. mitis-host interactions under commensal and pathogenic states, highlighting the need for studies to elucidate mechanisms regulating PcsB expression in this species.
RESUMEN
PURPOSE: Mechanisms underlying systemic infections by oral species of Mitis (Streptococcus mitis, Streptococcus oralis) and Sanguinis (Streptococcus gordonii, Streptococcus sanguinis) commensal streptococci are poorly understood. This study investigates profiles of susceptibility to complement-mediated host immunity in representative strains of these four species, which were isolated from oral sites or from the bloodstream. METHODOLOGY: Deposition of complement opsonins (C3b/iC3b), and surface binding to C-reactive protein (CRP) and to IgG antibodies were quantified by flow cytometry in 34 strains treated with human serum (HS), and compared to rates of opsonophagocytosis by human PMN mediated by complement (CR1/3) and/or IgG Fc (FcγRII/III) receptors. RESULTS: S. sanguinis strains showed reduced susceptibility to complement opsonization and low binding to CRP and to IgG compared to other species. Surface levels of C3b/iC3b in S. sanguinis strains were 4.5- and 7.8-fold lower than that observed in S. gordonii and Mitis strains, respectively. Diversity in C3b/iC3b deposition was evident among Mitis species, in which C3b/iC3b deposition was significantly associated with CR/FcγR-dependent opsonophagocytosis by PMN (P<0.05). Importantly, S. gordonii and Mitis group strains isolated from systemic infections showed resistance to complement opsonization when compared to oral isolates of the respective species (P<0.05). CONCLUSIONS: This study establishes species-specific profiles of susceptibility to complement immunity in Mitis and Sanguinis streptococci, and indicates that strains associated with systemic infections have increased capacity to evade complement immunity. These findings highlight the need for studies identifying molecular functions involved in complement evasion in oral streptococci.
Asunto(s)
Complemento C3b/inmunología , Variación Genética , Boca/microbiología , Estreptococos Viridans/genética , Estreptococos Viridans/inmunología , Adhesión Bacteriana , Biopelículas , Proteína C-Reactiva/metabolismo , Humanos , Evasión Inmune , Inmunoglobulina G/inmunología , Neutrófilos/inmunología , Neutrófilos/microbiología , Fagocitosis , Infecciones Estreptocócicas/sangre , Infecciones Estreptocócicas/inmunología , Streptococcus gordonii/genética , Streptococcus gordonii/inmunología , Streptococcus mitis/genética , Streptococcus mitis/inmunología , Streptococcus sanguis/genética , Streptococcus sanguis/inmunologíaRESUMEN
Cnm is a surface-associated protein present in a subset of Streptococcus mutans strains that mediates binding to extracellular matrices, intracellular invasion, and virulence. Here, we showed that cnm transcription is controlled by the global regulators CovR and VicRKX. In silico analysis identified multiple putative CovR- and VicR-binding motifs in the regulatory region of cnm as well as in the downstream gene pgfS, which is associated with the posttranslational modification of Cnm. Electrophoretic mobility shift assays revealed that CovR and VicR specifically and independently bind to the cnm and pgfS promoter regions. Quantitative real-time PCR and Western blot analyses of ΔcovR and ΔvicK strains as well as of a strain overexpressing vicRKX revealed that CovR functions as a positive regulator of cnm, whereas VicRKX acts as a negative regulator. In agreement with the role of VicRKX as a repressor, the ΔvicK strain showed enhanced binding to collagen and laminin and higher intracellular invasion rates. Overexpression of vicRKX was associated with decreased rates of intracellular invasion but did not affect collagen or lamin binding activities, suggesting that this system controls additional genes involved in binding to these extracellular matrix proteins. As expected, based on the role of CovR in cnm regulation, the ΔcovR strain showed decreased intracellular invasion rates, but, unexpectedly collagen and laminin binding activities were increased in this mutant strain. Collectively, the results presented here expand the repertoire of virulence-related genes regulated by CovR and VicRKX to include the core gene pgfS and the noncore gene cnmIMPORTANCEStreptococcus mutans is a major pathogen associated with dental caries and also implicated in systemic infections, in particular, infective endocarditis. The Cnm adhesin of S. mutans is an important virulence factor associated with systemic infections and caries severity. Despite its role in virulence, the regulatory mechanisms governing cnm expression are poorly understood. Here, we describe the identification of two independent regulatory systems controlling the transcription of cnm and the downstream pgfS-pgfM1-pgfE-pgfM2 operon. A better understanding of the mechanisms controlling expression of virulence factors like Cnm can facilitate the development of new strategies to treat bacterial infections.
Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Caries Dental/microbiología , Endocarditis/microbiología , Regulación Bacteriana de la Expresión Génica/genética , Procesamiento Proteico-Postraduccional , Infecciones Estreptocócicas/microbiología , Streptococcus mutans/genética , Adhesinas Bacterianas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Colágeno/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Operón/genética , Unión Proteica , Streptococcus mutans/metabolismo , Streptococcus mutans/patogenicidad , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismoRESUMEN
Streptococcus sanguinis is a pioneer species of teeth and a common opportunistic pathogen of infective endocarditis. In this study, we identified a two-component system, S. sanguinis SptRS (SptRS Ss ), affecting S. sanguinis survival in saliva and biofilm formation. Isogenic mutants of sptRSs (SKsptR) and sptSSs (SKsptS) showed reduced cell counts in ex vivo assays of viability in saliva compared to those of parent strain SK36 and complemented mutants. Reduced counts of the mutants in saliva were associated with reduced growth rates in nutrient-poor medium (RPMI) and increased susceptibility to the deposition of C3b and the membrane attach complex (MAC) of the complement system, a defense component of saliva and serum. Conversely, sptRSs and sptSSs mutants showed increased biofilm formation associated with higher levels of production of H2O2 and extracellular DNA. Reverse transcription-quantitative PCR (RT-qPCR) comparisons of strains indicated a global role of SptRS Ss in repressing genes for H2O2 production (2.5- to 15-fold upregulation of spxB, spxR, vicR, tpk, and ackA in sptRSs and sptSSs mutants), biofilm formation, and/or evasion of host immunity (2.1- to 11.4-fold upregulation of srtA, pcsB, cwdP, iga, and nt5e). Compatible with the homology of SptR Ss with AraC-type regulators, duplicate to multiple conserved repeats were identified in 1,000-bp regulatory regions of downstream genes, suggesting that SptR Ss regulates transcription by DNA looping. Significant transcriptional changes in the regulatory genes vicR, spxR, comE, comX, and mecA in the sptRSs and sptSSs mutants further indicated that SptRS Ss is part of a regulatory network that coordinates cell wall homeostasis, H2O2 production, and competence. This study reveals that SptRS Ss is involved in the regulation of crucial functions for S. sanguinis persistence in the oral cavity.
Asunto(s)
Biopelículas , Saliva/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus sanguis/fisiología , Proteínas Bacterianas/genética , Proteínas del Sistema Complemento/inmunología , Regulación Bacteriana de la Expresión Génica , Sitios Genéticos , Genoma Bacteriano , Genómica/métodos , Interacciones Huésped-Patógeno/inmunología , Peróxido de Hidrógeno/metabolismo , Viabilidad Microbiana/genética , Estrés Oxidativo , Eliminación de Secuencia , Infecciones Estreptocócicas/inmunología , Infecciones Estreptocócicas/metabolismoRESUMEN
We present an overview of how members of the oral microbiota respond to their environment by regulating gene expression through two-component signal transduction systems (TCSs) to support conditions compatible with homeostasis in oral biofilms or drive the equilibrium toward dysbiosis in response to environmental changes. Using studies on the sub-gingival Gram-negative anaerobe Porphyromonas gingivalis and Gram-positive streptococci as examples, we focus on the molecular mechanisms involved in activation of TCS and species specificities of TCS regulons.
RESUMEN
Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRKSm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRKSm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicKSm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicKSm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRKSm.
Asunto(s)
Proteínas Bacterianas/metabolismo , Complemento C3b/inmunología , Regulación Bacteriana de la Expresión Génica , Evasión Inmune , Streptococcus mutans/inmunología , Streptococcus mutans/fisiología , Bacteriemia , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Caries Dental/microbiología , Expresión Génica , Humanos , Inmunoglobulina G/inmunología , Proteínas de la Membrana/genética , Mutación , Unión Proteica , Streptococcus mutans/genética , Sacarosa/metabolismo , VirulenciaRESUMEN
Emerging antibiotic resistance in the oropharyngeal microbiota, of which Streptococcus salivarius is a prominent species, represents a challenge for treating paediatric populations. In this study, we investigated the role of Streptococcussalivarius as a reservoir for antibiotic resistance genes (ARG) in the oral microbiota by analysing 95 Streptococcussalivarius isolates from 22 healthy infants (2-16 months of age). MICs of penicillin G, amoxicillin, erythromycin, tetracycline, doxycycline and streptomycin were determined. ARG profiles were assessed in a subset of 21 strains by next-generation sequencing of genomes, followed by searches of assembled reads against the Comprehensive Antibiotic Resistance Database. Strains resistant to erythromycin, penicillins and tetracyclines were isolated from 83.3, 33.3 and 16.6 %, respectively, of infants aged 2 to 8 months with no prior antibiotic treatment. These percentages were100.0, 66.6 and 50.0 %, by 13 to 16 months of age. ARG or polymorphisms associated with antibiotic resistance were the most prevalent and involved genes for macrolide efflux (mel, mefA/E and macB), ribosomal protection [erm(B), tet(M) and tet(O)] and ß-lactamase-like proteins. Phylogenetically related strains showing multidrug-resistant phenotypes harboured multidrug efflux ARG. Polymorphic genes associated with antibiotic resistance to drugs affecting DNA replication, folate synthesis, RNA/protein synthesis and regulators of antibiotic stress responses were detected. These data imply that Streptococcussalivarius strains established during maturation of the oral microbiota harbour a diverse array of functional ARG, even in the absence of antibiotic selective pressures, highlighting a potential role for this species in shaping antibiotic susceptibility profiles of oropharyngeal communities.
Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Boca/microbiología , Streptococcus salivarius/efectos de los fármacos , Streptococcus salivarius/genética , Antibacterianos/clasificación , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Farmacorresistencia Bacteriana Múltiple/genética , Femenino , Genes Bacterianos , Genes MDR , Genoma Bacteriano , Genotipo , Voluntarios Sanos , Humanos , Lactante , Masculino , Proteínas de la Membrana/genética , Pruebas de Sensibilidad Microbiana , Fenotipo , Análisis de Secuencia de ADN , Streptococcus salivarius/clasificación , Streptococcus salivarius/fisiologíaRESUMEN
Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization.
Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas del Sistema Complemento/inmunología , Streptococcus mutans/fisiología , Animales , Sangre/microbiología , Complemento C3b/metabolismo , Proteínas del Sistema Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad , Glucanos/metabolismo , Humanos , Polisacáridos Bacterianos/metabolismo , Ratas , Ratas Sprague-Dawley , Streptococcus mutans/patogenicidad , Transcripción Genética , Virulencia/fisiologíaRESUMEN
Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions.
Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Streptococcus sanguis/fisiología , Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismoRESUMEN
The two-component system VicRK and the orphan regulator CovR of Streptococcus mutans co-regulate a group of virulence genes associated with the synthesis of and interaction with extracellular polysaccharides of the biofilm matrix. Knockout mutants of vicK and covR display abnormal cell division and morphology phenotypes, although the gene function defects involved are as yet unknown. Using transcriptomic comparisons between parent strain UA159 with vicK (UAvic) or covR (UAcov) deletion mutants together with electrophoretic motility shift assays (EMSA), we identified genes directly regulated by both VicR and CovR with putative functions in cell wall/surface biogenesis, including gbpB, wapE, smaA, SMU.2146c, and lysM. Deletion mutants of genes regulated by VicR and CovR (wapE, lysM, smaA), or regulated only by VicR (SMU.2146c) or CovR (epsC) promoted significant alterations in biofilm initiation, including increased fragility, defects in microcolony formation, and atypical cell morphology and/or chaining. Significant reductions in mureinolytic activity and/or increases in DNA release during growth were observed in knockout mutants of smaA, wapE, lysM, SMU.2146c and epsC, implying roles in cell wall biogenesis. WapE and lysM mutations also affected cell hydrophobicity and sensitivity to osmotic or oxidative stress. Finally, vicR, covR and VicRK/CovR-targets (gbpB, wapE, smaA, SMU.2146c, lysM, epsC) are up-regulated in UA159 during biofilm initiation, in a sucrose-dependent manner. These data support a model in which VicRK and CovR coordinate cell division and surface biogenesis with the extracellular synthesis of polysaccharides, a process apparently required for formation of structurally stable biofilms in the presence of sucrose.
Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Proteínas Represoras/metabolismo , Streptococcus mutans/fisiología , Proteínas Bacterianas/genética , Perfilación de la Expresión Génica , Proteínas Represoras/genética , Sacarosa/metabolismoRESUMEN
OBJECTIVES: The intensities and specificities of salivary IgA antibody responses to antigens of Streptococcus mutans, the main pathogen of dental caries, may influence colonization by these organisms during the first 1.5 year of life. Thus, the ontogeny of salivary IgA responses to oral colonizers continues to warrant investigation, especially with regard to the influence of birth conditions, e.g. prematurity, on the ability of children to efficiently respond to oral microorganisms. In this study, we characterised the salivary antibody responses to two bacterial species which are prototypes of pioneer and pathogenic microorganisms of the oral cavity (Streptococcus mitis and Streptococcus mutans, respectively) in fullterm (FT) and preterm (PT) newborn children. METHODS: Salivas from 123 infants (70 FT and 53 PT) were collected during the first 10h after birth and levels of IgA and IgM antibodies and the presence of S. mutans and S. mitis were analysed respectively by ELISA and by chequerboard DNA-DNA hybridization. Two subgroups of 24 FT and 24 PT children were compared with respect to patterns of antibody specificities against S. mutans and S. mitis antigens, using Western blot assays. Cross-adsorption of 10 infant's saliva was tested to S. mitis, S. mutans and Enterococcus faecalis antigens. RESULTS: Salivary levels of IgA at birth were 2.5-fold higher in FT than in PT children (Mann-Whitney; P<0.05). Salivary IgA antibodies reactive with several antigens of S. mitis and S. mutans were detected at birth in children with undetectable levels of those bacteria. Adsorption of infant saliva with cells of S. mutans produced a reduction of antibodies recognizing S. mitis antigens in half of the neonates. The diversity and intensity of IgA responses were lower in PT compared to FT children, although those differences were not significant. CONCLUSION: These data provide evidence that children have salivary IgA antibodies shortly after birth, which might influence the establishment of the oral microbiota, and that the levels of salivary antibody might be related to prematurity.
Asunto(s)
Formación de Anticuerpos/inmunología , Inmunoglobulina A Secretora/inmunología , Boca/inmunología , Saliva/inmunología , Streptococcus mitis/inmunología , Streptococcus mutans/inmunología , Western Blotting , Distribución de Chi-Cuadrado , Enterococcus faecalis/inmunología , Enterococcus faecalis/aislamiento & purificación , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunoglobulina M/inmunología , Recién Nacido , Recien Nacido Prematuro/inmunología , Masculino , Leche Humana/inmunología , Boca/química , Boca/microbiología , Saliva/química , Estadísticas no Paramétricas , Streptococcus mitis/aislamiento & purificación , Streptococcus mutans/aislamiento & purificaciónRESUMEN
The virulence of the dental caries pathogen Streptococcus mutans relies in part on the sucrose-dependent synthesis of and interaction with glucan, a major component of the extracellular matrix of tooth biofilms. However, the mechanisms by which secreted and/or cell-associated glucan-binding proteins (Gbps) produced by S. mutans participate in biofilm growth remain to be elucidated. In this study, we further investigate GbpB, an essential immunodominant protein with similarity to murein hydrolases. A conditional knockdown mutant that expressed gbpB antisense RNA under the control of a tetracycline-inducible promoter was constructed in strain UA159 (UACA2) and used to investigate the effects of GbpB depletion on biofilm formation and cell surface-associated characteristics. Additionally, regulation of gbpB by the two-component system VicRK was investigated, and phenotypic analysis of a vicK mutant (UAvicK) was performed. GbpB was directly regulated by VicR, and several phenotypic changes were comparable between UACA2 and UAvicK, although differences between these strains existed. It was established that GbpB depletion impaired initial phases of sucrose-dependent biofilm formation, while exogenous native GbpB partially restored the biofilm phenotype. Several cellular traits were significantly affected by GbpB depletion, including altered cell shape, decreased autolysis, increased cell hydrophobicity, and sensitivity to antibiotics and osmotic and oxidative stresses. These data provide the first experimental evidence for GbpB participation in sucrose-dependent biofilm formation and in cell surface properties.
Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulón/fisiología , Streptococcus mutans/metabolismo , Proteínas Bacterianas/genética , Regulación hacia Abajo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mutación , ARN Bacteriano , Streptococcus mutans/efectos de los fármacos , Streptococcus mutans/genética , Streptococcus mutans/fisiología , Sacarosa/farmacologíaRESUMEN
Transmission of Streptococcus mutans, a major dental caries pathogen, occurs mainly during the first 2.5 years of age. Children appear to acquire S. mutans mostly from their mothers, but few studies have investigated non-familial sources of S. mutans transmission. This study prospectively analysed initial S. mutans oral colonization in 119 children from nursery schools during a 1.5-year period and tracked the transmission from child to child, day-care caregiver to child and mother to child. Children were examined at baseline, when they were 5-13 months of age, and at 6-month intervals for determination of oral levels of S. mutans and development of caries lesions. Levels of S. mutans were also determined in caregivers and mothers. A total of 1392 S. mutans isolates (obtained from children, caregivers and mothers) were genotyped by arbitrarily primed PCR and chromosomal RFLP. Overall, 40.3 % of children were detectably colonized during the study, and levels of S. mutans were significantly associated with the development of caries lesions. Identical S. mutans genotypes were found in four nursery cohorts. No familial relationship existed in three of these cohorts, indicating horizontal transmission. Despite high oral levels of S. mutans identified in most of the caregivers, none of their genotypes matched those identified in the respective children. Only 50 % of children with high levels of S. mutans carried genotypes identified in their mothers. The results support previous evidence indicating that non-familial sources of S. mutans transmission exist, and indicate that this bacterium may be transmitted horizontally between children during the initial phases of S. mutans colonization in nursery environments.