Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Foods ; 13(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38998646

RESUMEN

This study investigates the effect of continuous blue light (CBL) treatment on quality-related metabolites, focusing on ascorbic acid (AsA) accumulation in hydroponically grown Eruca vesicaria (L.). Plants were subjected to CBL treatment, consisting of 24-h exposure to constant-intensity blue light (48 µmol m-2 s-1) and 12-h exposure to the remaining spectrum (192 µmol m-2 s-1). The activities of key enzymes in AsA biosynthesis and recycling were analyzed, including L-galactono-1,4-lactone dehydrogenase (GalLDh), monodehydroascorbate reductase (MDhAR), dehydroascorbate reductase (DhAR), and ascorbate peroxidase (APX). The results showed a significant increase in AsA accumulation of 65.9% during the "day" and 69.1% during the "night" phases under CBL compared to controls. GalLDh activity increased by 20% during the "day phase" in CBL-treated plants. APX activity also rose significantly under CBL conditions, by 101% during the "day" and 75.6% during the "night". However, this did not affect dehydroascorbic acid levels or the activities of MDhAR and DhAR. These findings highlight the potential of tailored light treatments to enhance the nutraceutical content of horticultural species, offering valuable insights for sustainably improving food quality in controlled-environment agriculture (CEA) systems and understanding the roles of blue light in ascorbic acid biosynthesis.

2.
Plants (Basel) ; 11(16)2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-36015424

RESUMEN

Areas covered by seminatural grasslands have been in constant decline for decades in Europe. This trend is particularly strong for mountain territories, where such traditional agricultural practices as cattle grazing are no longer economically feasible. This study was conducted in the subalpine pasture of Cinte Tesino (TN, Italy), where local farmers have applied the following different management strategies: shorter and longer grazing durations during the season and a complete abandonment for the last 15 years. We aimed to study how these different management strategies impact the functioning and diversity of vegetation and the chemical and biological characteristics of the soil. Species richness was higher in plots subjected to longer grazing with a prevalence of D. caespitosa in terms of biomass share. A decline in species richness in abandoned plots was accompanied by an increase in the share of other graminoids in collected biomass. A concomitant increase in leaf N concentration and light availability in grazed plots resulted in higher photosynthetic efficiency in some species, as revealed by the δ13C of plant tissues. Soils under grazing were characterised by a higher concentration of total and extractable N, almost doubled microbial biomass C and increased extracellular enzymes activity, evidencing nutrient cycling mobilization. While the microbial pool was characterised by lower mineralization rates, C was lost from the soil with 15 years of abandonment. The longer grazing season demonstrated to be the most beneficial, promoting species richness, C accumulation and better soil microbial functioning. A change in soil pH from strongly acidic to moderately acidic with longer grazing is likely one of the important factors adding to the success in the functioning of primary producers and decomposers in this site.

3.
Plant Cell Environ ; 42(6): 1929-1938, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30663094

RESUMEN

Eucalypts are major emitters of biogenic volatile organic compounds (BVOCs), especially volatile isoprenoids. Emissions and incorporation of 13 C in BVOCs were measured in Eucalyptus camaldulensis branches exposed to rapid heat stress or progressive temperature increases, in order to detect both metabolic processes and their dynamics. Isoprene emission increased and photosynthesis decreased with temperatures rising from 30°C to 45°C, and an increasing percentage of unlabelled carbon was incorporated into isoprene in heat-stressed leaves. Intramolecular labelling was also incomplete in isoprene emitted by heat-stressed leaves, suggesting increasing contribution of respiratory (and possibly also photorespiratory) carbon. At temperature above 45°C, a drop of isoprene emission was mirrored by the appearance of unlabelled monoterpenes, green leaf volatiles, methanol, and ethanol, indicating that the emission of stored volatiles was mainly induced by cellular damage. Emission of partially labelled acetaldehyde was also observed at very high temperatures, suggesting a double source of carbon, with a large unlabelled component likely transported from roots and associated to the surge of transpiration at very high temperatures. Eucalypt plantations cover large areas worldwide, and our findings may dramatically change forecast and modelling of future BVOC emissions at planetary level, especially considering climate warming and frequent heat waves.


Asunto(s)
Butadienos/metabolismo , Eucalyptus/metabolismo , Hemiterpenos/metabolismo , Calor , Monoterpenos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Dióxido de Carbono , Italia , Fotosíntesis , Hojas de la Planta/metabolismo , Coloración y Etiquetado
4.
PLoS One ; 8(7): e66811, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23843966

RESUMEN

Neuron behavior results from the interplay between networks of biochemical processes and electrical signaling. Synaptic plasticity is one of the neuronal properties emerging from such an interaction. One of the current approaches to study plasticity is to model either its electrical aspects or its biochemical components. Among the chief reasons are the different time scales involved, electrical events happening in milliseconds while biochemical cascades respond in minutes or hours. In order to create multiscale models taking in consideration both aspects simultaneously, one needs to synchronize the two models, and exchange relevant variable values. We present a new event-driven algorithm to synchronize different neuronal models, which decreases computational time and avoids superfluous synchronizations. The algorithm is implemented in the TimeScales framework. We demonstrate its use by simulating a new multiscale model of the Medium Spiny Neuron of the Neostriatum. The model comprises over a thousand dendritic spines, where the electrical model interacts with the respective instances of a biochemical model. Our results show that a multiscale model is able to exhibit changes of synaptic plasticity as a result of the interaction between electrical and biochemical signaling. Our synchronization strategy is general enough to be used in simulations of other models with similar synchronization issues, such as networks of neurons. Moreover, the integration between the electrical and the biochemical models opens up the possibility to investigate multiscale process, like synaptic plasticity, in a more global manner, while taking into account a more realistic description of the underlying mechanisms.


Asunto(s)
Cuerpo Estriado/fisiología , Modelos Neurológicos , Neuronas/fisiología , Potenciales de Acción , Algoritmos , Simulación por Computador , Espinas Dendríticas/fisiología , Estimulación Eléctrica , Plasticidad Neuronal , Fosforilación , Receptores de Glutamato/metabolismo , Transducción de Señal , Sinapsis
5.
Front Neuroinform ; 6: 20, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685429

RESUMEN

The NEURON simulation environment is a commonly used tool to perform electrical simulation of neurons and neuronal networks. The NEURON User Interface, based on the now discontinued InterViews library, provides some limited facilities to explore models and to plot their simulation results. Other limitations include the inability to generate a three-dimensional visualization, no standard mean to save the results of simulations, or to store the model geometry within the results. Neuronvisio (http://neuronvisio.org) aims to address these deficiencies through a set of well designed python APIs and provides an improved UI, allowing users to explore and interact with the model. Neuronvisio also facilitates access to previously published models, allowing users to browse, download, and locally run NEURON models stored in ModelDB. Neuronvisio uses the matplotlib library to plot simulation results and uses the HDF standard format to store simulation results. Neuronvisio can be viewed as an extension of NEURON, facilitating typical user workflows such as model browsing, selection, download, compilation, and simulation. The 3D viewer simplifies the exploration of complex model structure, while matplotlib permits the plotting of high-quality graphs. The newly introduced ability of saving numerical results allows users to perform additional analysis on their previous simulations.

6.
Eur Biophys J ; 40(11): 1225-35, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21713534

RESUMEN

Alkaline folates self-associate in aqueous solutions to form columnar lyotropic phases. Such phases are made by quadruplexes, which are supramolecular helicoidal structures formed by a stacked array of folate tetramers. High-pressure synchrotron X-ray diffraction is used to analyze alkaline folate quadruplex stability and energetics. Diffraction data show that both inter-helical lateral and tetramer stacking distances decrease as a function of pressure. Lateral and axial quadruplex compressibilities and force constants have been derived and strong correlation between the strength of tetramer stacking and pressure effects demonstrated. In particular, quadruplex rigidity increases by changing Na+ to K+ and by adding excess KCl, as a consequence of increased stacking interactions and quadruplex elongation.


Asunto(s)
Ácido Fólico/química , Pruebas de Dureza , Conformación Molecular , Presión , Difracción de Rayos X , Fuerza Compresiva , Dimerización , Elasticidad , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA